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SAT solvers are great!

Hardware/software verification, optimization, SMT solvers, ...

Keller's Conjecture [IJCAR'20]

Pythagorean triples [SAT'16]

Lam’s Problem [AAAI'21]

Cayden R. Codel
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My work: extend the trusted SAT toolchain to include
encodings by using a theorem prover
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My work: extend the trusted SAT toolchain to include
encodings by using a theorem prover

Prior work [Cruz-Filipe, Marques-Silva, Schneider-Kamp '19;
Giljegard and Wennerbreck '21] verified specific encodings; our
library is general
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Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million LoC, with theorems on lists, sets, natural numbers, . ..

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Quick demol!
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Verified encodings library

The encodings library is open-source on Github

Contains:
» Data structures (CNF representations, variable generation)
» Supporting lemmas and theorems
» Proofs of correctness for parity, at-most-one, at-most-k
» Support for combining encodings to form larger ones

Basis for future verification efforts
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Library preliminaries

Goal: prove that an encoding is correct

But what is a correct encoding?
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C is a boolean constraint with inputs X = xy,...,x,

F encodes C if for all truth assignments 7,
C(r(x1),...,7(xn)) < o, 0(F)=T,

where o agrees with 7 on X (i.e. Vx € X, 7(x) = o(x))
(In other words, o extends 7.)

An encoding function E is correct for C if the formula it
produces encodes C on all inputs
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Library preliminaries

In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
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In Lean, the definitions look like:

def encodes (C : comstraint) (1 : list literal) (F : cnf) :=
V (7 : assignment),
(C.eval 7 1 = tt) «
J o, F.eval 0 = tt A agree_on 7 o (vars 1)

def is_correct (C : constraint) (enc : enc_fn) :=
V {1 : list literal} {g : gensym}, disjoint 1 g —
encodes C ((enc 1 g).formula) 1

We prove that the encoding functions in our library are correct
according to these definitions
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Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)
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Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)

g Cg  vars(E((,g)) Cvars(f) U (g \ g')

def is_wb (enc : enc_fn) :=

V {1 : list literal} {g : gensym}, disjoint 1 g —
(enc 1 g).gensym C g A

vars (enc 1 g).formula C (vars 1) U (g \ (enc 1 g).gensym)
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Case study: at-most-one
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Case study: at-most-one

(xi = si) A (si = siv1) A (si— Xis1)

We implement the encodings in Lean's functional
programming language:

def Sinz_amo : enc_fn

| [1:1, 1.1 g :=
let (y, g1) := g.fresh in
([[-11, y1, [-y, -1.11, &)

| (1 1 :: 1s) g :=

let ( g1) := g.fresh in

let (z, _) = gi.fresh in

let (F_rec, g) := sinz_rec (1, :: 1ls) g in
([[-11, y1, [-y, z], [-y, -1211 ++ F_rec, g)
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We implement the encodings in Lean's functional

programming language:

| [11, 12] g =
let (y, g1) := g.fresh in

([[-11, y1, [-y, -1.11, &)
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Case study: at-most-one

(xi = si) A (si = siv1) A (si— Xis1)

We implement the encodings in Lean's functional
programming language:

let (y, gi) := g.fresh in
let (z, _) := gi.fresh in

++
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Case study: at-most-one

(xi = si) A (si = siv1) A (si— Xis1)

We implement the encodings in Lean's functional
programming language:

let (F_rec, g2) := sinz_rec (1 :: 1ls) g1 in
++
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Case study: at-most-one

(xi = si) A (si = siv1) A (si— Xis1)

We implement the encodings in Lean's functional
programming language:

([[-11, y1, [-y, z], [-y, -1211 ++ F_rec, g)
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Proof methods

The method of correctness proof follows the form of encoding
function (recursive = induction, non-recursive = “direct”)
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Proof methods

The method of correctness proof follows the form of encoding
function (recursive = induction, non-recursive = “direct”)

We must be careful with the fresh variables:

XOR(X1, - - -y Xn) = XOR(Xq, - -, Xk—_1,¥) D XOR(Y, Xk, - - - Xn)
IH used on S = {y, %k, ..., X,}, so the assignment given back
extends S. But 7 is defined on {xi,...,x,}.

In “direct” proofs, supply extended assignments explicitly
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Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) :=enc; 1 g in
let (F2, g2) :=enc2 1 g1 in
(F1 ++ F2, g2)
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Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, gi1) :=enc; 1 g in
let (F2, g2) :=enc2 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
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is_correct (c; ++ c) (ency ++ ency) := ...

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc; ency : enc_fn) : enc_fn :=
A (1 : list literal) (g : gensym),
let (F1, g1) :=enc; 1 g in
let (F2, go) := enco 1 g1 in
(F1 ++ F2, g2)

theorem is_correct_append
{c1 c» : constraint} {enc; enc, : enc_fn} :
is_correct c; enc; — is_correct c» ency —
is_correct (c; ++ c) (ency ++ ency) := ...

Toy example by combining sub-encodings for Sudoku (demo!)
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Applications and future work

» Prove more (sub-)encodings correct

» Re-write variable generation in terms of a monad

» Prove the Keller SAT reduction correct

» Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way
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Verified encodings for SAT solvers

Thank you for your attention!
Any questions?
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