
Verified encodings for SAT solvers

Cayden R. Codel
Advised by Marijn J. H. Heule and Jeremy Avigad

June 26 - 30, 2023

Repo at https://github.com/ccodel/verified-encodings

Cayden R. Codel 1 / 18

https://github.com/ccodel/verified-encodings


The problem with SAT encodings

The Lean theorem prover

Verified encodings library

Applications

Cayden R. Codel 2 / 18



SAT solvers are great!

Hardware/software verification, optimization, SMT solvers, . . .

Keller’s Conjecture [IJCAR’20]

Pythagorean triples [SAT’16] a2 + b2 = c2

Lam’s Problem [AAAI’21]

Cayden R. Codel 3 / 18



SAT solvers are great!

Hardware/software verification, optimization, SMT solvers, . . .

Keller’s Conjecture [IJCAR’20]

Pythagorean triples [SAT’16] a2 + b2 = c2

Lam’s Problem [AAAI’21]

Cayden R. Codel 3 / 18



SAT solvers are great!

Hardware/software verification, optimization, SMT solvers, . . .

Keller’s Conjecture [IJCAR’20]

Pythagorean triples [SAT’16] a2 + b2 = c2

Lam’s Problem [AAAI’21]

Cayden R. Codel 3 / 18



SAT solvers are great!

Hardware/software verification, optimization, SMT solvers, . . .

Keller’s Conjecture [IJCAR’20]

Pythagorean triples [SAT’16] a2 + b2 = c2

Lam’s Problem [AAAI’21]

Cayden R. Codel 3 / 18



The SAT toolchain

Trusted SAT toolchain

F SAT solver

SAT solver

τ

Pf

Model
checker ✓
Model
checker ✓

Proof
checker ✓
Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F SAT solver

SAT solver

τ

Pf

Model
checker ✓
Model
checker ✓

Proof
checker ✓
Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F SAT solver

SAT solver

τ

Pf

Model
checker ✓
Model
checker ✓

Proof
checker ✓
Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F SAT solver

SAT solver

τ

Pf

Model
checker ✓

Model
checker ✓

Proof
checker ✓
Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F SAT solver

SAT solver

τ

Pf

Model
checker ✓

Model
checker ✓

Proof
checker ✓

Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F

SAT solver

SAT solver

τ

Pf

Model
checker ✓

Model
checker ✓

Proof
checker ✓

Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F

SAT solver

SAT solver

τ

Pf

Model
checker ✓

Model
checker ✓

Proof
checker ✓

Proof
checker ✓

Cayden R. Codel 4 / 18



The SAT toolchain

Trusted SAT toolchain

F

SAT solver

SAT solver

τ

Pf

Model
checker ✓

Model
checker ✓

Proof
checker ✓

Proof
checker ✓

Cayden R. Codel 4 / 18



The problem with encodings

A Encoding

Encoding

F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol UnencSol

∄

Cayden R. Codel 5 / 18



The problem with encodings

A Encoding

Encoding

F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol UnencSol

∄

Cayden R. Codel 5 / 18



The problem with encodings

A Encoding

Encoding

F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol

UnencSol

∄

Cayden R. Codel 5 / 18



The problem with encodings

A Encoding

Encoding

F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol

UnencSol

∄

Cayden R. Codel 5 / 18



The problem with encodings

A Encoding

Encoding F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol

UnencSol

∄

Cayden R. Codel 5 / 18



The problem with encodings

A

Encoding

Encoding

F
SAT

toolchain

F
SAT

toolchain

τ

Pf

UnencSol

UnencSol

∄

Cayden R. Codel 5 / 18



My work: extend the trusted SAT toolchain to include
encodings by using a theorem prover

Prior work [Cruz-Filipe, Marques-Silva, Schneider-Kamp ’19;
Giljeg̊ard and Wennerbreck ’21] verified specific encodings; our
library is general

Cayden R. Codel 6 / 18



My work: extend the trusted SAT toolchain to include
encodings by using a theorem prover

Prior work [Cruz-Filipe, Marques-Silva, Schneider-Kamp ’19;
Giljeg̊ard and Wennerbreck ’21] verified specific encodings; our
library is general

Cayden R. Codel 6 / 18



The Lean theorem prover

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million LoC, with theorems on lists, sets, natural numbers, . . .

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Quick demo!

Cayden R. Codel 7 / 18



The Lean theorem prover

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million LoC, with theorems on lists, sets, natural numbers, . . .

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Quick demo!

Cayden R. Codel 7 / 18



The Lean theorem prover

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million LoC, with theorems on lists, sets, natural numbers, . . .

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Quick demo!

Cayden R. Codel 7 / 18



The Lean theorem prover

Lean is an interactive theorem prover based on the calculus of
inductive constructions (constructive logic)

mathlib is the community mathematics library, with over a
million LoC, with theorems on lists, sets, natural numbers, . . .

Proofs are written in Lean declaratively or with tactics that
manipulate proof state (similar to Coq, Isabelle, etc.)

Quick demo!

Cayden R. Codel 7 / 18



Verified encodings library

The encodings library is open-source on Github

Contains:

▶ Data structures (CNF representations, variable generation)

▶ Supporting lemmas and theorems

▶ Proofs of correctness for parity, at-most-one, at-most-k

▶ Support for combining encodings to form larger ones

Basis for future verification efforts

Cayden R. Codel 8 / 18



Verified encodings library

The encodings library is open-source on Github

Contains:

▶ Data structures (CNF representations, variable generation)

▶ Supporting lemmas and theorems

▶ Proofs of correctness for parity, at-most-one, at-most-k

▶ Support for combining encodings to form larger ones

Basis for future verification efforts

Cayden R. Codel 8 / 18



Verified encodings library

The encodings library is open-source on Github

Contains:

▶ Data structures (CNF representations, variable generation)

▶ Supporting lemmas and theorems

▶ Proofs of correctness for parity, at-most-one, at-most-k

▶ Support for combining encodings to form larger ones

Basis for future verification efforts

Cayden R. Codel 8 / 18



Library preliminaries

Goal: prove that an encoding is correct

But what is a correct encoding?

Cayden R. Codel 9 / 18



Library preliminaries

Goal: prove that an encoding is correct

But what is a correct encoding?

Cayden R. Codel 9 / 18



Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x1, . . . , xn

F encodes C if for all truth assignments τ ,

C (τ(x1), . . . , τ(xn)) ↔ ∃σ, σ(F ) = ⊤,

where σ agrees with τ on X (i.e. ∀x ∈ X , τ(x) = σ(x))
(In other words, σ extends τ .)

An encoding function E is correct for C if the formula it
produces encodes C on all inputs

Cayden R. Codel 10 / 18



Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x1, . . . , xn

F encodes C if for all truth assignments τ ,

C (τ(x1), . . . , τ(xn)) ↔ ∃σ, σ(F ) = ⊤,

where σ agrees with τ on X (i.e. ∀x ∈ X , τ(x) = σ(x))
(In other words, σ extends τ .)

An encoding function E is correct for C if the formula it
produces encodes C on all inputs

Cayden R. Codel 10 / 18



Library preliminaries

F is a formula in propositional logic

C is a boolean constraint with inputs X = x1, . . . , xn

F encodes C if for all truth assignments τ ,

C (τ(x1), . . . , τ(xn)) ↔ ∃σ, σ(F ) = ⊤,

where σ agrees with τ on X (i.e. ∀x ∈ X , τ(x) = σ(x))
(In other words, σ extends τ .)

An encoding function E is correct for C if the formula it
produces encodes C on all inputs

Cayden R. Codel 10 / 18



Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (l : list literal) (F : cnf) :=

∀ (τ : assignment),

(C.eval τ l = tt) ↔
∃ σ, F.eval σ = tt ∧ agree_on τ σ (vars l)

def is_correct (C : constraint) (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
encodes C ((enc l g).formula) l

We prove that the encoding functions in our library are correct
according to these definitions

Cayden R. Codel 11 / 18



Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (l : list literal) (F : cnf) :=

∀ (τ : assignment),

(C.eval τ l = tt) ↔
∃ σ, F.eval σ = tt ∧ agree_on τ σ (vars l)

def is_correct (C : constraint) (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
encodes C ((enc l g).formula) l

We prove that the encoding functions in our library are correct
according to these definitions

Cayden R. Codel 11 / 18



Library preliminaries

In Lean, the definitions look like:

def encodes (C : constraint) (l : list literal) (F : cnf) :=

∀ (τ : assignment),

(C.eval τ l = tt) ↔
∃ σ, F.eval σ = tt ∧ agree_on τ σ (vars l)

def is_correct (C : constraint) (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
encodes C ((enc l g).formula) l

We prove that the encoding functions in our library are correct
according to these definitions

Cayden R. Codel 11 / 18



Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)

gE (ℓ, g)

ℓ g ′

g ′ ⊆ g vars(E (ℓ, g)) ⊆ vars(ℓ) ∪ (g \ g ′)

def is_wb (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
(enc l g).gensym ⊆ g ∧
vars (enc l g).formula ⊆ (vars l) ∪ (g \ (enc l g).gensym)

Cayden R. Codel 12 / 18



Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)

gE (ℓ, g)

ℓ g ′

g ′ ⊆ g vars(E (ℓ, g)) ⊆ vars(ℓ) ∪ (g \ g ′)

def is_wb (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
(enc l g).gensym ⊆ g ∧
vars (enc l g).formula ⊆ (vars l) ∪ (g \ (enc l g).gensym)

Cayden R. Codel 12 / 18



Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)

gE (ℓ, g)

ℓ g ′

g ′ ⊆ g vars(E (ℓ, g)) ⊆ vars(ℓ) ∪ (g \ g ′)

def is_wb (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
(enc l g).gensym ⊆ g ∧
vars (enc l g).formula ⊆ (vars l) ∪ (g \ (enc l g).gensym)

Cayden R. Codel 12 / 18



Library preliminaries

Encodings must also be well-behaved (i.e. that they generate
fresh variables in a reasonable way)

gE (ℓ, g)

ℓ g ′

g ′ ⊆ g vars(E (ℓ, g)) ⊆ vars(ℓ) ∪ (g \ g ′)

def is_wb (enc : enc_fn) :=

∀ {l : list literal} {g : gensym}, disjoint l g →
(enc l g).gensym ⊆ g ∧
vars (enc l g).formula ⊆ (vars l) ∪ (g \ (enc l g).gensym)

Cayden R. Codel 12 / 18



Case study: at-most-one

The Sinz at-most-one encoding produces ∼ 3n clauses and
needs n − 1 new variables:

Sinz(X ) =
∧n−1

i=1

(
(x i ∨ si) ∧ (s i ∨ si+1) ∧ (s i ∨ x i+1)

)

The three clauses are logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Cayden R. Codel 13 / 18



Case study: at-most-one

The Sinz at-most-one encoding produces ∼ 3n clauses and
needs n − 1 new variables:

Sinz(X ) =
∧n−1

i=1

(
(x i ∨ si) ∧ (s i ∨ si+1) ∧ (s i ∨ x i+1)

)
The three clauses are logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Cayden R. Codel 13 / 18



Case study: at-most-one

The Sinz at-most-one encoding produces ∼ 3n clauses and
needs n − 1 new variables:

Sinz(X ) =
∧n−1

i=1

(
(x i ∨ si) ∧ (s i ∨ si+1) ∧ (s i ∨ x i+1)

)
The three clauses are logically equivalent to

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

x1

s1

x2

s2

x3

s3

x4

s4

. . .

. . .

Cayden R. Codel 13 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Case study: at-most-one

(xi → si) ∧ (si → si+1) ∧ (si → x i+1)

We implement the encodings in Lean’s functional
programming language:

def Sinz_amo : enc_fn

| [l1, l2] g :=

let ⟨y, g1⟩ := g.fresh in

⟨[[-l1, y], [-y, -l2]], g1⟩

| (l1 :: l2 :: ls) g :=

let ⟨y, g1⟩ := g.fresh in

let ⟨z, _⟩ := g1.fresh in

let ⟨F_rec, g2⟩ := sinz_rec (l2 :: ls) g1 in

⟨[[-l1, y], [-y, z], [-y, -l2]] ++ F_rec, g2⟩

Cayden R. Codel 14 / 18



Proof methods

The method of correctness proof follows the form of encoding
function (recursive ⇒ induction, non-recursive ⇒ “direct”)

We must be careful with the fresh variables:

xor(x1, . . . , xn) ≡ xor(x1, . . . , xk−1, y)⊕ xor(y , xk , . . . , xn)

IH used on S = {y , xk , . . . , xn}, so the assignment given back
extends S . But τ is defined on {x1, . . . , xn}.

In “direct” proofs, supply extended assignments explicitly

Cayden R. Codel 15 / 18



Proof methods

The method of correctness proof follows the form of encoding
function (recursive ⇒ induction, non-recursive ⇒ “direct”)

We must be careful with the fresh variables:

xor(x1, . . . , xn) ≡ xor(x1, . . . , xk−1, y)⊕ xor(y , xk , . . . , xn)

IH used on S = {y , xk , . . . , xn}, so the assignment given back
extends S . But τ is defined on {x1, . . . , xn}.

In “direct” proofs, supply extended assignments explicitly

Cayden R. Codel 15 / 18



Proof methods

The method of correctness proof follows the form of encoding
function (recursive ⇒ induction, non-recursive ⇒ “direct”)

We must be careful with the fresh variables:

xor(x1, . . . , xn) ≡ xor(x1, . . . , xk−1, y)⊕ xor(y , xk , . . . , xn)

IH used on S = {y , xk , . . . , xn}, so the assignment given back
extends S . But τ is defined on {x1, . . . , xn}.

In “direct” proofs, supply extended assignments explicitly

Cayden R. Codel 15 / 18



Proof methods

The method of correctness proof follows the form of encoding
function (recursive ⇒ induction, non-recursive ⇒ “direct”)

We must be careful with the fresh variables:

xor(x1, . . . , xn) ≡ xor(x1, . . . , xk−1, y)⊕ xor(y , xk , . . . , xn)

IH used on S = {y , xk , . . . , xn}, so the assignment given back
extends S . But τ is defined on {x1, . . . , xn}.

In “direct” proofs, supply extended assignments explicitly

Cayden R. Codel 15 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (f1, g1) := enc1 l g in

let (f2, g2) := enc2 l g1 in

(f1 ++ f2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

Combine sub-encodings to form more complex ones

Easily recover proofs of correctness

def append (enc1 enc2 : enc_fn) : enc_fn :=

λ (l : list literal) (g : gensym),

let (F1, g1) := enc1 l g in

let (F2, g2) := enc2 l g1 in

(F1 ++ F2, g2)

theorem is_correct_append

{c1 c2 : constraint} {enc1 enc2 : enc_fn} :

is_correct c1 enc1 → is_correct c2 enc2 →
is_correct (c1 ++ c2) (enc1 ++ enc2) := . . .

Toy example by combining sub-encodings for Sudoku (demo!)

Cayden R. Codel 16 / 18



Applications and future work

▶ Prove more (sub-)encodings correct

▶ Re-write variable generation in terms of a monad

▶ Prove the Keller SAT reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 17 / 18



Applications and future work

▶ Prove more (sub-)encodings correct

▶ Re-write variable generation in terms of a monad

▶ Prove the Keller SAT reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 17 / 18



Applications and future work

▶ Prove more (sub-)encodings correct

▶ Re-write variable generation in terms of a monad

▶ Prove the Keller SAT reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 17 / 18



Applications and future work

▶ Prove more (sub-)encodings correct

▶ Re-write variable generation in terms of a monad

▶ Prove the Keller SAT reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 17 / 18



Applications and future work

▶ Prove more (sub-)encodings correct

▶ Re-write variable generation in terms of a monad

▶ Prove the Keller SAT reduction correct

▶ Write verified proof checkers for SAT proof systems

Overall, the goal is to make Lean the one-stop-shop for
generating SAT queries in a trusted way

Cayden R. Codel 17 / 18



Verified encodings for SAT solvers

Thank you for your attention!
Any questions?

Cayden R. Codel 18 / 18


	The problem with SAT encodings
	The Lean theorem prover
	Verified encodings library
	Applications

