
A Study of Divide and Distribute Fixed Weights
and its Variants

Cayden R. Codel
ccodel@andrew.cmu.edu

Advised by Marijn J. H. Heule
mheule@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, PA



Abstract. Divide and Distribute Fixed Weights (DDFW) is a stochas-
tic local search Boolean satisfiability (SAT) solver that has achieved
a high level of performance on select problem instances, including the
Pythagorean triples instance for n = 7824. Yet despite its success, DDFW
has received little research interest, and its initial results are out of date
with respect to more modern SAT benchmarks. To address both those
research needs, we examine DDFW in depth and propose modifications
to the algorithm based off of ideas from similar SAT solvers such as
ProbSAT and SAPS. We then take these modifications and test DDFW
against a set of modern hard benchmarks. We present three main findings.
The first is a confirmation that a greedy variable selection process in
focused search is optimal for DDFW. The second is that a linear weight
transfer rule is more effective than a fixed additive one. The third is that
it is more effective for unsatisfied clauses to borrow clause weight from
its entire neighborhood rather than a singular clause in local minima, as
it does in the original algorithm. The second and third strategies produce
modifications of the DDFW algorithm that perform 30-50% better than
the original, with 3x higher solve rates.

1 Introduction

As the first proven NP-hard problem [11], the Boolean satisfiability problem
(SAT) has inspired much research. Not only is the SAT problem of theoretical
interest but, because any NP-hard problem may be reduced to SAT, it also
has a vast number of applications. For example, SAT solvers—algorithms that
solve SAT problem instances—have found use in industry and academia as black-
box algorithms, assisting in termination analysis of term-rewriting systems [14],
planning in AI [28], bounded model checking of ANSI-C programs [10], managing
software packages [42], and inferring haplotype in bioinformatics [30]. If a problem
can be converted into SAT, then a SAT solver may be a powerful tool.

However, the success of SAT is plagued by its inherent limitations. SAT is an
NP-hard problem, so unless P = NP, an efficient algorithm for all SAT instances
is unobtainable. Nevertheless, decades of research have produced hundreds of SAT
solvers, each sporting their own flavors of solving techniques and strategies. Over
the years, SAT solvers have come to be classified into one of several SAT-solving
paradigms. We discuss the two most prevalent here.

The first SAT-solving paradigm is conflict-driven clause learning (CDCL).
The core of CDCL solvers is the DPLL backtracking algorithm proposed by Davis,
Putnam, Logemann, and Loveland [12]. CDCL solvers use unit propogation and
resolution to explore the search space until either a satisfying assignment to the
Boolean variables of the SAT instance is found or a conflict is reached. By adding
conflict clauses to the overall formula, CDCL solvers are guaranteed to find a
satisfying assignment if one exists or conclude that there is no satisfying assign-
ment. In addition to merely stating that a problem instance is unsatisfiable, many
CDCL solvers have been developed which can output a proof of unsatisfiability
that can be formally checked by proof checkers. These proofs are instrumental

2



in verifying groundbreaking results in combinatorial problems [8,18,21]. The
first CDCL solver was arguably GRASP [31]. Other CDCL solvers of note are
CaDiCaL [6] and Lingeling [4]. For an overview of CDCL, cf. chapter 4 of the
Handbook of Satisfiability [3].

The second SAT-solving paradigm is stochastic local search (SLS). Generally,
SLS solvers start with some initial truth assignment to the Boolean variables
and incrementally flip the truth value of a single variable at a time until a
satisfying assignment is discovered. SLS solvers are incomplete, meaning that
they are not guaranteed to produce a satisfying assignment. Yet, SLS solvers
can sometimes quickly find satisfying assignments to problem instances that take
state-of-the-art CDCL solvers CPU years to find. SLS solvers perform best on
random SAT instances, which are notoriously hard for CDCL solvers, but success
can also be found on structured problem instances. For example, encodings of
matrix multiplication problems into SAT appear hard for CDCL solvers and
many SLS solvers [20], yet YalSAT [5], an SLS solver developed in 2014, solves
these challenge instances in minutes on a single CPU.

The SLS algorithm that is the focus of this thesis is the Divide and Distribute
Fixed Weights (DDFW) algorithm, first presented in 2005 [27]. At a high level,
DDFW associates a weight to each clause and then attempts to find a satisfying
assignment by minimizing the amount of weight held by the unsatisfied clauses.
The novelty of DDFW is that when a local minimum is reached, weight is
transferred from satisfied clauses to unsatisfied clauses along clause neighborhood
relationships, rather than across all clauses. Like YalSAT, DDFW has found
success on a particular structured problem instance. Of the 33 solvers present
in the SLS framework UBCSAT [41], DDFW is the only SLS solver able to
complete the Pythagorean triples instance for n = 7824 [21] on a single CPU with
a timeout of one million flips, and it does so in under a minute.1 Such a quick
solve time is remarkable when compared to the many thousands of CPU hours
that were required to initially solve the n = 7824 instance. It is unfortunate,
then, that only a handful of publications exist examining DDFW. Due to the
lack of research literature on DDFW and the age of the research literature that
does exist, two research needs arise.

The first is the need to examine the solving techniques of DDFW more
thoroughly. DDFW assumes that it is optimal to flip variables which decrease
the total amount of weight held by the unsatisfied clauses. However, ProbSAT [2]
and its implementation YalSAT have shown that it is not always optimal to flip
the best-appearing variable at each step, instead preferring a more spread-out
probability distribution from which to select variables to flip.DDFW also assumes
that reweighting unsatisfied clauses along clause neighborhood relationships is an
effective technique for escaping local minima. As this idea is unique to DDFW,
this reweighting strategy has not been explored outside of its original publications
and so requires investigation. Research into these two assumptions and additional

1Four solvers were able to find an assignment that made the instance evaluate to a single
digit number of unsatisfied clauses. These algorithms were g2wsat, novelty++,
novelty+p, and PAWS.

3



solving techniques for DDFW may reveal a heuristic that is more effective on a
larger number of SAT instances, increasing the success of DDFW.

The second research need is the need to update the literature on how effective
DDFW is against more recent hard SAT instances. Benchmarks which were
considered hard a decade ago can now be solved in seconds by state-of-the-art SAT
solvers. Because DDFW was first proposed in 2005, its initial results are outdated.
When combined with results from the first research direction, experimental testing
may reveal a heuristic for DDFW that is effective on modern benchmarks.

In this thesis, I contribute to both of these research needs. I propose modifica-
tions to DDFW in how it selects which variables to flip and in how it reweights
clauses in local minima. The modifications I propose are inspired by similar
SAT solvers which have also enjoyed success, such as YalSAT and SAPS [24].
I then test these heuristics against a suite of hard SAT benchmark instances
culled from research publications and applications of the last few years. My
contributions are not exhaustive on either front—the space of variable selection
and clause reweighting heuristics is rich, and additional hard benchmarks are
published annually at the SAT Competition2—and so this thesis also contributes
an implementation of DDFW that allows for easy testing of additional heuristics
against updated benchmarks.

I present three main findings from my experiments. They are as follows:

• DDFW attempts to find a satisfying assignment by flipping variables that
reduce the amount of weight held by unsatisfied clauses the most at each
step. I propose two additional variable selection probability distributions and
test them against a new test set of hard SAT instances. Testing showed
that the original selection distribution is optimal.

• In local minima, DDFW distributes weight from satisfied clauses to unsatis-
fied clauses according to fixed amounts. I propose that weight be transferred
according to a linear transfer rule instead. Experiments show that a combi-
nation of multiplicative and additive constants produce a DDFW algorithm
that performs 30% better than the original, with 3x the solve rate.

• In local minima, DDFW distributes weight from a single satisfied clause to a
single unsatisfied clause at a time. I propose that weight be transferred from
entire satisfied neighborhoods instead. Experiments show that distributing
roughly the same amount of weight from entire neighborhoods achieves a
50% improvement over the original DDFW algorithm.

The organization of the thesis is as follows: In Section 2, we cover preliminaries
of general notation and definitions used in the remainder of the thesis. Section 3
reviews prior work into similar SLS solvers. Section 4 discusses the DDFW
algorithm in-depth, as well as the new strategies investigated by this thesis.
The section ends with some notes on the implementation of DDFW used in
experiments. Section 5 presents the experimental results of testing DDFW and
the new strategies against an updated set of hard SAT benchmark instances. We
make concluding remarks and propose future work in Section 6.

2Visit http://www.satcompetition.org/ for more information.

4

http://www.satcompetition.org/


2 Preliminaries

A Boolean satisfiability (SAT) problem instance is a propositional formula F
consisting of a set of Boolean variables {x1, x2, ..., xn} and their negations joined
by logical connectives. The goal of a SAT solver is to find an assignment of
true and false values to the Boolean variables such that the overall formula
evaluates to true. Such an assignment is called a satisfying assignment. While any
well-formed Boolean formula constitutes a SAT problem instance, it is standard
to express formulas in conjunctive normal form (CNF). It is well known that any
Boolean formula can be converted into CNF, so SAT solvers expecting problem
instances in CNF form does not preclude solving. We define CNF here:

Definition 1 (Conjuctive normal form (CNF)). A Boolean formula F is in
conjunctive normal form if it is an indexed set of clauses C = {C1, C2, ..., Cm}
joined by logical ANDs:

F =

m∧
j=1

Cj

where each clause Cj is an indexed set of Boolean literals Cj = {v1, v2, ..., v|Cj |}
joined by logical ORs:

Cj =

|Cj |∨
k=1

vk

with each vk ∈ {xi,¬xi} for some i ∈ [1, n].

In other words, F is a conjunction of clauses, each of which is a disjunction
of literals. We take the conventions that each clause is unique up to ordering
of its literals and that each clause contains unique literals, such that for every
distinct pair vk, vℓ ∈ Cj , vk ̸= vℓ and ¬vk ̸= vℓ.

Let us denote assignments of truth values to the n Boolean variables as α
such that α(xi) ∈ {⊤,⊥} for all i ∈ [1, n], with ⊤ representing true and ⊥
representing false. Let U(F , α) give the set of clauses in F that have no literal
which evaluates to true under α. We call U the set of unsatisfied clauses in F .
Let u(F , α) := |U(F , α)|. Define S(F , α) and s(F , α) in a similar way for the set
and number of satisfied clauses under α. We drop F if the formula α acts on is
clear by context. In an abuse of notation, if C ⊆ C is a subset of the clauses of
F , let U(C,α) (respectively, S(C,α)) give the set of clauses in C which are left
unsatisfied (satisfied) under α, and let u and s be defined similarly.

Formulas in CNF have the nice property that flipping α(xi) from ⊥ to ⊤
makes any clause containing xi evaluate to true. If a literal xi occurs in many
clauses, then it is usually advantageous for an SLS solver to set α(xi) = ⊤
(respectively, ¬xi and α(¬xi) = ⊥). It is thus useful to relate clauses which share
literals. We call these clauses neighbors. Groups of clause neighbors are called a
neighborhood. We formally define clause neighborhoods here:

Definition 2 (Neighboring clause). Let F be a Boolean formula in CNF on
n variables {x1, x2, ..., xn}. Fix a clause Cj ∈ F . Then Ck ∈ F , Ck ≠ Cj is a

5



same-sign neighbor of Cj if there is a literal v ∈ {xi,¬xi} for some i such
that v ∈ Cj ∩ Ck. We say that Cj and Ck are neighbors on v. Let N(Cj) be the
set of all such same-sign neighboring clauses Ck ̸= Cj.

Same-sign neighboring clauses are clauses that share at least one literal of
the same sign. For brevity, we write that two clauses are neighbors to mean that
they are same-sign neighbors, unless otherwise indicated.

As is discussed in Section 4, DDFW speculates that the property of clause
neighborhoods becoming satisfied together is key to finding a satisfying assign-
ment, and so it attempts to satisfy neighborhoods together. To further encapsulate
this idea,DDFW lets an unsatisfied clause Cj borrow weight from satisfied clauses
in its neighborhood S(N(Cj), α). The concept of assigning weight to and moving
weight between clauses is not unique to DDFW, as we shall see in Section 3.
However, that DDFW moves weight within clause neighborhoods is unique.
Therefore, we define the notation needed to work with clause weights:

Definition 3 (Clause weighting function). Let F be a Boolean formula in
CNF. Then let the weight of clause Cj ∈ C be given by W (Cj), where W : C → R+

assigns a positive real value to each clause. Denote the sum of weights of the
unsatisfied clauses under an assignment α as WU (F , α) and the sum of weights
of the satisfied clauses under α as WS(F , α).

Definition 4 (Unsatisfied weight reducing variable). Let F be a Boolean
formula in CNF, α be an assignment, and W be a clause weighting function.
Then xi is an unsatisfied weight reducing variable if∑

C∈U(C,α′)

W (C) <
∑

C∈U(C,α)

W (C)

where α′(xi) = ¬α(xi) and α′(xj) = α(xj) for all other j ̸= i. Let R(F , α) be the
set of unsatisfied weight reducing variables in F under α.

If the goal of an SLS solver is to reduce WU (F , α), then it is advantageous
to flip the truth values of unsatisfied weight reducing variables in R(F , α). If
|R(F , α)| = 0, then a local minimum has been reached.

Section 4 shows how DDFW uses the concepts of clause neighborhoods
and unsatisfied weight reducing variables to solve CNF formulas. But before we
discuss DDFW, we first discuss similar SLS solvers and potential motivations
for modifications to DDFW.

6



3 Prior work in SLS

Stochastic local search (SLS) algorithms attempt to solve Boolean satisfiability
(SAT) problem instances by making incremental changes to an assignment α
until a satisfying assignment is found. These incremental changes almost always
take the form of changes in sign (“flips”) of a single Boolean variable at a time.
Many SLS solvers choose to flip Boolean variables that reduce the number of
unsatisfied clauses u(F , α), but there are many exceptions to this rule. Yet no
matter how SLS algorithms prioritize the variables they flip, the eventual goal is
to end with a satisfying assignment.

There are a few drawbacks to the SLS method. The first is that SLS solvers are
not guaranteed to find a satisfying assignment to a satisfiable problem instance in
a finite amount of time. As a result, SLS algorithms are classified as incomplete.
Many solvers use randomness to achieve approximate completeness [22], but
ultimately, randomness does not guarantee completeness. The second drawback
is that SLS solvers cannot prove that a problem instance is unsatisfiable. The
reason for this comes from the first drawback: after any finite number of flips, SLS
solvers cannot differentiate between a satisfiable instance and an unsatisfiable
one. As a result, SLS solvers in practice are given problem instances which are
known or expected to be satisfiable.

Yet despite these drawbacks, SLS solvers still enjoy success over the more
systematic CDCL solvers on many classes of problem instances. SLS is the method
of choice for randomly constructed SAT instances and on encodings of some graph
coloring problems and the N-queens problem [36,37]. Work has also been done to
make SLS solvers more effective on general structured problem instances [9,15,23].
Some SLS solvers perform surprisingly well on singular classes of structured
problem instances, such as YalSAT [5] on matrix multiplication problems [20]
and DDFW [27] on the Pythagorean triples n = 7824 instance [21].

In this section, we discuss several SLS solvers and how the ideas of their
implementations may relate to DDFW or inspire potential modifications. The
first solver, Walksat, is presented in Section 3.1. Walksat is a simple and
influential SLS solver that captures the essence of many SLS solvers. While not
a direct predecessor to DDFW, it is still instructive to examine. The second
solver, ProbSAT, is covered in Section 3.2. ProbSAT generalizes the method
of choosing which variable to flip when there are many potential candidates.
The methods of variable selection used in ProbSAT and DDFW are different,
but the success of ProbSAT inspires potential modifications for DDFW when
it comes to variable selection. The third and final solver is SAPS, discussed
in Section 3.3. SAPS is a direct predecessor to DDFW, as it also reweights
clauses in local minima. The reweighting method in SAPS is more global, though:
weights are normalized across all clauses, as opposed to the method in DDFW of
moving weight within clause neighborhoods. Although DDFW improves on the
ideas in SAPS, SAPS suggests that reweighting from larger groups of clauses
may be more effective than singular clauses, as is the method in DDFW.

7



3.1 A look at Walksat

Each SLS algorithm answers the question of how it selects which Boolean variables
to flip differently. Naively, solvers should prioritize making flips that cause the
greatest decrease in u(F , α). If there are no variables that decrease u when flipped,
then a local minimum has been reached. The space of heuristics to escape local
minima is vast, and many strategies have been proposed.

One strategy to escape local minima is to make flips that keep u(F , α) constant
until a flip which decreases u becomes available. Flips that keep u at the same
value are called “sideways moves.” If u is plotted on a y-axis and the number of
flips on the x-axis, then this strategy would cause u to decrease until it reaches a
“plateau.” u stays on this plateau until a u-decreasing variable is found, at which
point u drops again, potentially into another plateau. This algorithmic idea of
sideways moves is implemented in the SLS algorithm known asGSAT [37]—where
the “G” stands for greedy—to some experimental success.

However, some plateaus cannot be escaped simply by making sideways moves.
One way to “dislodge” α from these kinds of local minima is to intentionally flip
a variable which increases u. The hope is that slight perturbations in u causes
faster and more effective escapes from local minima than only taking sideways
moves. Introducing the occasional “random walk” flip gives Walksat [35]. In
experimental testing, Walksat performed an order of magnitude better than
GSAT in both the time and the number of flips needed to find a satisfying
assignment, and Walksat was able to solve problem instances twice as large as
those solved by GSAT. Due to its simplicity and effectiveness, Walksat has
become an influential SLS algorithm, off of which many other solvers are based.
Pseudocode for Walksat can be found in Algorithm 1.

Algorithm 1: Walksat(p)

1 Input: n Boolean variables x1, ..., xn and a CNF formula F ;
2 for MAX-TRIES times do
3 α← randomly generated truth assignment;
4 for MAX-FLIPS times do
5 if α satisfies F then
6 return α;
7 else
8 if rand(0, 1) ≤ p then
9 Cj ← random unsatisfied clause in U(α);

10 Flip a random literal in Cj ;

11 else
12 Flip a literal which decreases u(α) the most;
13 end

14 end

15 end

16 end
17 return “No satisfying assignment”;

8



The parameter p determines the odds of a random walk flip occurring. With
probability p, a random unsatisfied clause Cj is chosen, and a random literal
in Cj is flipped, satisfying the clause. Of course, the random variable flip may
cause any number of satisfied clauses with the opposite-signed literal to become
unsatisfied. u may thus increase with this kind of flip. With probability 1− p, the
GSAT search procedure is conducted, called “focused search.” u will decrease or
engage in sideways moves with this kind of flip. In experimental testing, p was
found to be optimal between 0.5 and 0.6 for the set of random SAT instances
selected in the study, but p is naturally sensitive to the exact problem instance
being considered.3

Walksat embodies two main elements of an SLS solver succinctly: many
flips are made to directly improve some metric (e.g. u), while others are made to
perturb α in order to escape from local minima. While the implementations of
other SLS solvers differ wildly when compared to Walksat, it is often the case
that other solvers share these two elements with Walksat.

3.2 A look at ProbSAT

When considering Walksat in Algorithm 1, one may ask whether one literal
should be preferred over another when performing a random walk. Perhaps the
solver should prioritize literals that, when flipped, decrease u the most among
those in the selected clause. Or perhaps the solver should instead prioritize
literals that cause the least number of clauses to become unsatisfied, regardless
of how many clauses become satisfied. By changing the underlying probability
distribution the literals of the clause are chosen from, the SLS solver can be
configured to, on average, make more effective random walk flips.

The generalization of the probability distribution in the random walk portion
of Walksat is found in ProbSAT [2]. Instead of a flat probability distribution,
ProbSAT picks literals proportional to each literal’s score under an abstract
function f(v, α). Pseudocode of ProbSAT is presented in Algorithm 2. An
implementation of ProbSAT with additional optimizations is YalSAT [5].

In Walksat, we saw that focused search flips variables which decrease u
the most. ProbSAT goes one step further and examines whether it is more
effective to flip variables that satisfy the most number of clauses (“make”) or
variables that cause the least number of satisfied clauses to become unsatisfied
(“break”). An interesting result from the original publication was that the effect
of make could be effectively ignored. In other words, it was better to prioritize
variables which minimized break than maximized make. It was also found that a
probability distribution of the form f(v, α) = (cb)

−break(v,α) was better than a
polynomial one. The parameter cb was found to have an optimal value of around
2.5. Such an exponential distribution may prove useful when considering how to
sample variables to flip in other SLS solvers, such as DDFW.

3While too much of a tangent to explore here, it is worthwhile to note the literature on
the hardness of random satisfiable SAT instances and how hard random instances may
be generated (cf. [13,16,17,29,32,38]). In short, their generation is nontrivial.

9



Algorithm 2: ProbSAT(f)

1 Input: n Boolean variables x1, ..., xn and a CNF formula F ;
2 for MAX-TRIES times do
3 α← randomly generated truth assignment;
4 for MAX-FLIPS times do
5 if α satisfies F then
6 return α;
7 else
8 Cj ← random unsatisfied clause in U(α);
9 for v ∈ Cj do

10 compute f(v, α);
11 end

12 v ← random variable according to probability f(v,α)∑
v∈Cj

f(v,α)
;

13 end

14 end

15 end
16 return “No satisfying assignment”;

3.3 A look at SAPS

Both of the previously-discussed algorithms attempt to minimize u(F , α) in
their search for a satisfying assigment. Yet u is not, a priori, the best metric
to minimize. Notions of minimizing the sum of unsatisfied clause sizes, the sum
of unsatisfied clause neighborhood sizes, or the number of distinct variables in
unsatisfied clauses are all metrics that, when equal to 0, mean that a satisfying
assignment has been found. Clearly, a rich space exists in which to explore
possible minimization metrics for SLS algorithms.

As alluded to already in Definition 3, assigning a weight to each clause
in F via a weighting function W gives a minimization metric WU (F , α), the
sum of weights held by the unsatisfied clauses under an assignment α. When
WU (F , α) = 0, then we have found a satisfying assignment (as W gives strictly
positive weights to each clause). We note that if W (Cj) = 1 for every clause,
then there is no difference between minimizing WU and minimizing u. In this
sense, WU is a generalization of u.

If WU is our minimization metric, then it is likely advantageous to flip
variables that reduce WU . Definition 4 supplies us with a GSAT-like algorithm
for minimizing WU : flip unsatisfied weight reducing variables whenever possible.
Of course, the question arises of what to do in a local minimum.

SAPS (“Scaling and Probabilistic Smoothing”) [24], a WU -minimizing SLS
algorithm, answers that question with a method of clause reweighting. When
a local minimum is reached, the weights of all unsatisfied clauses clauses are
mulitplied by a scaling factor a. Then, with probability psmooth, all clause weights
are “smoothed” to the average weight value via

W (Cj)← n×W ′(Cj) + (1− n)×W (C)

10



where W ′(Cj) is the updated weight value equal to W (Cj) if Cj is satisfied and
a×W (Cj) if Cj is unsatisfied, and where n is a normalization factor between 0 and

1. W (C) denotes the average clause weight before smoothing. In the publication
introducing SAPS, optimal values for these parameters were a = 1.3, n = 0.8,
psmooth = 0.05, and a random walk probability of pwalK = 0.01 (see below).

The rest of SAPS is familiar to what we’ve seen before—start with a random
initial assignment, pick the best unsatisfied weight reducing variable to flip, and
sometimes take a random walk—and is presented in Algorithm 3. For more
details, see the cited publication.

Algorithm 3: SAPS(psmooth, pwalk, a, n)

1 Input: n Boolean variables x1, ..., xn and a CNF formula F ;
2 for MAX-TRIES times do
3 α← randomly generated truth assignment;
4 for MAX-FLIPS times do
5 if α satisfies F then
6 return α;
7 else
8 if |R(F , α)| > 0 then
9 Flip a literal in R that reduces WU the most;

10 else
11 if rand(0, 1) ≤ pwalk then
12 Flip a random literal in F ;
13 else
14 for Cj ∈ U(C) do
15 W (Cj)← a×W (Cj);
16 end
17 if rand(0, 1) ≤ psmooth then
18 for Cj ∈ C do

19 W (Cj)← n×W (Cj) + (1− n)×W (C);
20 end

21 end

22 end

23 end

24 end

25 end

26 end
27 return “No satisfying assignment”;

Algorithm 3 lays out a base procedure for how to flip variables that reduce
WU and how to reweight clauses in a local minimum. The procedure can be
extended with more complex ways of selecting variables and reweighting clauses.
One such exmaple of an “extension” to how SAPS selects which variables to
flip can be found in CCANR [9]. CCANR incorporates the concepts of age

11



and configuration changing, the latter meaning preventing variable flips if the
neighborhood has not changed since the previous flip, preventing cycling. The
heuristic of configuration changing appears to make SLS algorithms more effective
on structured problem instances.

The idea of clause reweighting present in SAPS is not new; rather, the
solvers using clause reweighting strategies form a kind of family tree. SAPS
inherited many of its ideas from an SLS algorithm called ESG (“Exponential
Sub-Gradient method”),4 and it passes its ideas to two solvers. The most direct
descendent of SAPS is an algorithm called PAWS (“Pure Additive Weighting
Scheme”) [40]. The only significant difference between the two algorithms is that
PAWS reweights clauses additively instead of multiplicatively. The study that
introduced PAWS found that the additive reweighting method was less CPU
intensive. As a result, PAWS was able to perform more flips than SAPS in
the same amount of time, possibly contributing to the success of PAWS over
SAPS on a majority of the test set. Yet, SAPS outperformed PAWS on several
problem classes, particularly smaller problem instances. The authors speculated
that the difference in weight value types—SAPS with floating-point weight values
and PAWS with integral ones—contributed to this performance discrepancy by
allowing SAPS to have more expressive clause weights. However, the authors
remarked that the exact reason for this was unknown and left it for future work.

PAWS, in turn, passes on its algorithmic ideas to DDFW. DDFW reweights
clauses additively, like PAWS, but in a novel way, building on its predecessors.
In its original form, DDFW only distributes weights in an additive way, staying
“purely PAWS.” But SAPS succeeded over PAWS for some reason. Therefore,
when we turn to modifying DDFW in the next section, we keep SAPS—and
the other solvers discussed above—in mind.

4The interested reader may also refer to SDF [34], a “cousin” of ESG.

12



4 DDFW and its modifications

Divide and Distribute Fixed Weights (DDFW) [27] is an SLS algorithm that
seeks to minimize WU (F , α). It does so by assigning a weight to each clause
and then flips variables which reduce the amount of weight held by unsatisfied
clauses. When a local minimum is reached, weight is moved from satisfied clauses
to unsatisfied clauses via clause neighborhood relationships. Eventually, enough
weight will be transferred to the unsatisfied clauses that at least one variable
may be flipped to minimize WU , and the focused search begins anew.

Despite DDFW being the only SLS solver, to my or the original authors’
knowledge, that exploits clause neighborhood relationships in local minima,
remarkably little literature has been published on DDFW. Aside from its intro-
duction, only a couple of other papers explore modifications to the base algorithm
[25,26].5 DDFW is also not prevalent in the SAT solving community, but it
has seen some use as a black-box SAT solver in other publications [1,19] and in
Microsoft’s open-source Z3 Theorem Prover.6

To ameliorate the lack of study into DDFW, we embark on an examination
of several parts of the algorithm. We first cover the original implementation of
DDFW in Section 4.1. Modifications to the probability distribution for how
unsatisfiable weight reducing variables are chosen are discussed in Section 4.2,
and modifications to the weight transfer rule are discussed in Section 4.3. A
strategy for abandoning the current assignment in favor of reverting back to a
more optimal assignment is introduced in Section 4.4. All of these modifications
see experimental testing in Section 5. We finish in Section 4.5 with notes on the
implementation of DDFW used for the experiments.

4.1 DDFW

We present the DDFW algorithm as it appeared in its original publication [27].
After reading in a Boolean formula F in CNF, DDFW assigns a fixed starting
weight to every clause, i.e. W (Cj) = winit for every Cj . The original publication
posited that a value of winit = 8 was best. Then an initial random assignment α
is generated and focused search begins. At each step, a variable from R(F , α)
which reduces WU the most is flipped. If |R(F , α)| = 0, then with probability
0.15, a sideways move is taken, if one exists. Otherwise, DDFW determines it
has reached a local minimum, and so it moves to its reweighting phase.

To reweight, DDFW takes each unsatisfied clause Cj ∈ U(C, α) and moves
weight from one of its satisfied neighbors in S(N(Cj), α) to Cj . DDFW makes
sure to not take too much weight away from any one clause at a time: for a value
of winit = 8, the most amount of weight moved between clauses is 2. If there are

5Of note is the publication made in 2021 by one of the original DDFW authors
[25] during the undertaking of this thesis! Even though the publication is new, the
benchmarks used for testing in the paper match the ones from the 2005 publication,
and so there is still need to test DDFW against an updated set of benchmarks.

6https://github.com/Z3Prover/z3

13

https://github.com/Z3Prover/z3


no satisfied neighbors of a great enough weight, then a random satisfied clause of
sufficient weight is used instead for the weight transfer.

The above algorithmic description is presented in detail in Algorithm 4.

Algorithm 4: DDFW

1 Input: n Boolean variables x1, ..., xn and a CNF formula F ;
2 Initialize each clause’s weight to winit;
3 for MAX-TRIES times do
4 α← randomly generated truth assignment;
5 for MAX-FLIPS times do
6 if α satisfies F then
7 return α;
8 else
9 if |R(F , α)| > 0 then

10 Flip a literal in R which decreases WU the most;
11 else if rand(0, 1) ≤ 0.15 and a sideways move exists then
12 Flip a literal which does not increase WU ;
13 else
14 for Cj ∈ U(F , α) do
15 Ck ← argmaxCk

{W (Ck) : Ck ∈ S(N(Cj), α)};
16 if W (Ck) < winit or rand(0, 1) ≤ 0.01 then
17 Ck ← random satisfied clause with W (Ck) ≥ winit;
18 end
19 if W (Ck) > winit then
20 Transfer a weight of two from Ck to Cj ;
21 else
22 Transfer a weight of one from Ck to Cj ;
23 end

24 end

25 end

26 end

27 end

28 end
29 return “No satisfying assignment”;

Not mentioned in the original publication but appearing in the code supple-
menting it was the random walk in line 16. With small probability p = 0.01,
the maximum-weight neighbor Ck is discarded, and a random satisfied clause
with weight at least winit is chosen instead. This change was included in the
implementation used for experimentation in Section 5.

Two features of DDFW distinguish it from similar SLS solvers. The first is
in how DDFW applies its reweighting rule. Similar solvers escape local minima
using a two-step process: first, the weights of the unsatisfied clauses are increased;
and second, all weights are normalized so as to keep the total weight from growing
too large. DDFW combines these two steps into one by moving weight directly

14



from satisfied clauses to unsatisfied clauses. In this way, DDFW obeys a kind of
weight conservation law, and so the total weight remains constant.

The second distinguishing feature of DDFW is in which satisfied clauses
share weight. DDFW exploits the properties of same-sign neighborhoods as
discussed underneath Definition 2: namely, that flipping a shared literal helps
all clauses that are neighbors on that literal by increasing the number of literals
in those clauses that evaluate to true. Thus, borrowing weight from satisfied
neighbors to satisfy an unsatisfied clause will never harm any of the neighbors
from which that weight was borrowed. DDFW explicitly creates these “alliances”
between same-sign neighbors in how it transfers weight in a local minimum.

A couple notes on particular implementation details of DDFW are in order.
Firstly, DDFW chooses to increase the weight of all unsatisfied clauses in a
local minimum, as opposed to decreasing the weight of all satisfied clauses, due
to speedup achieved in practice. In general, SLS solvers start with an initial
assignment under which tens of thousands of clauses may remain unsatisfied.
Within thousands of flips, though, the number of unsatisfied clauses drops quickly.
Applying a reweighting rule to the remaining unsatisfied clauses means applying
the rule to a small number of clauses a majority of the time.

Secondly, the clause weights are all integers (winit = 8, the reweighting rule
transfers a weight of 1 or 2). The clause weights need not be integers, but actual
implementations of DDFW prefer them for several reasons: integer operations
are faster than floating-point ones on most CPUs, integers don’t suffer from
floating-point rounding error, and small integers allow for various optimizations
in the variable selection and clause reweighting structures maintained by the
algorithm. Yet the choice to use integers unnecessarily restricts the expressivity
of the variable selection and reweighting strategies, as we shall see.7

DDFW in its original form enjoys success on selected random SAT instances
and the Pythagorean triples instance. But the value of winit = 8 and the weight
transfer values of 1 and 2 are fixed constants. While these values may work best
on some problem instances, they are not guaranteed to work on all. A deeper
understanding of why these values work may lead to an improvement on the
algorithm. To that end, we generalize two aspects of the DDFW algorithm.

The simpler generalization is abstracting away the probability distribution
from which literals in R(F , α) are drawn during focused search. DDFW flips only
those literals which cause the greatest decrease in WU , but as seen in ProbSAT
in Algorithm 2, it is sometimes advantageous to flip less-than-optimal variables.
We may instead draw literals from R proportional to their score under some f .

The other generalization we may make is abstracting away the weight transfer
rule applied in a local minimum. Currently, DDFW transfers a fixed constant

7One could point out that using large enough integers would allow DDFW to “scale-up”
operations so the effect of floating-point numbers could be approximated, but large
integers invite their own host of problems, including overflow and the temptation to
use floating-point operations in more complex weight transfer rules. Because I did
not wish to navigate these issues, I decided to bite the bullet and use floating-point
numbers, despite their drawbacks.

15



amount of weight from a single satisfied neighboring clause to an unsatisfied
one. We may ask how the performance of DDFW is affected if weight is moved
according to more complex functions, or if weight is taken from larger numbers
of clauses in the neighborhoods.

In the sections directly below, we explore potential other implementations for
both of these generalized aspects.

4.2 Modifications to the variable selection probability distribution

Line 10 in Algorithm 4 selects a random literal in R(F , α) that causes the greatest
decrease in WU when flipped. However, we are not limited to only those variables
in R. We can instead apply a probability distribution determined by a function f
as in ProbSAT. In this way, we may explore which method of unsatisfied weight
reducing variable selection is optimal for DDFW.

We propose two additional probability distributions here. The first is the uni-
form distribution: flip a random literal in R. The second is a weighted distribution
proportional to the amount flipping the literal would decrease WU by. Under this
distribution, literals which decrease WU more tend to be flipped more often, but
less-preferred variables sometimes get flipped as well. A directly linear function
f is most straightforward, and was investigated in Section 5. Future work could
consider an exponential distribution, as in ProbSAT. The replacement to line
10 for this probability distribution would look like

v ← random variable according to probability
∆W (xi)∑
i ∆W (xi)

, xi ∈ R(F , α)

where ∆W (xi) is the reduction of unsatisfied weight if xi is flipped in α.

4.3 Modifications to the weight transfer rule

Lines 20 and 22 in Algorithm 4 transfer fixed weights of 2 and 1 from a single
satisfied neighboring clause to an unsatisfied clause when DDFW reaches a local
minimum. When winit = 8, the percentage of a clause’s weight moved in a single
transfer is capped at 25% of the initial weight value. But there may be situations
where local minima can only be escaped after multiple weight transfers, such
as when a supermajority of the clause weight is held by the satisfied clauses. In
these situations, it is more advantageous to transfer larger amounts of weight at
a time to “short-circuit” the need for multiple transfers. A more complex weight
transfer rule, dependent on the amount of weight in the neighborhood, could
solve this problem and may lead to a more effective reweighting strategy.

There are two immediate ways of moving more weight in a single transfer:
take more from the maximum-weight clause, or take weight from a larger number
of clauses. For the first, we consider a linear transfer rule dependent on a
multiplicative parameter a and an additive parameter c. A linear rule is chosen
to capture the reasoning in the above paragraph: when there is more weight

16



available in the maximum-weight clause, more weight should be transferred. Lines
20 and 22 then become:

Transfer a weight of (a×W (Ck)) + c from Ck to Cj

Note that this rule does not differentiate between W (Ck) above or at most winit.
On the one hand, the linear rule dispenses with this problem: for a < 1, when
the amount of weight W (Ck) draws closer to or falls below winit, less weight is
transferred, which approximates the effect of the original transfer rule. But on the
other hand, there may be utility in switching between transfer rules in high-weight
and low-weight scenarios. My implementation of DDFW, as mentioned in Section
4.5, thus allows for two sets of linear parameters to be specified: one pair to be
applied when W (Ck) > winit, and one pair to be applied when W (Ck) ≤ winit.
Setting both pairs of constants equal to each other makes the linear rule blind to
whetehr W (Ck) is greater than or at most winit.

Of course, there are plenty of functions more expressive than linear ones that
may be used for the weight transfer rule. Polynomials of higher order, logistic
functions, and exponential functions are all candidate transfer rules as well. But
the parameter space posed by a and c in combination with the modification to
transfer weight from larger groups of clauses in the neighborhood (see below)
is large enough without introducing new classes of functions, and so we leave
exploration into these alternative transfer rules for future work.

The second way of moving more weight in a single transfer is to take weight
from a larger number of clauses. While it is certainly the case that a parameter
n could be introduced to control the number of maximum-weight neighbors to
take weight from, any fixed n runs into the same problem that n = 1 does in
DDFW: a static parameter does not allow for reaction to the current state of
the algorithm. For example, in situations where an unsatisfied clause has an
above-average sized satisfied neighborhood, then satisfying the clause would
potentially help an above-average number of clauses. Thus, more weight should
be transferred to that clause. To that end, we will consider applying the transfer
rule to all satisfied clauses in the neighborhood.

Algorithm 5: Transfer rule for all neighboring clauses

1 Input: an unsatisfied clause Cj ;
2 for Ck ∈ S(N(Cj), α) do
3 Transfer weight from Ck to Cj according to the transfer rule;
4 end

We have some choice in how we apply the transfer rule to these clauses.
Ultimately, we want to transfer weight from every applicable clause to the
unsatisfied clause. We could do so by applying the transfer rule to each individual
clause. We call this kind of rule application the “individual transfer method.” But
we could also compute how much weight we’d like to take from the neighborhood

17



as a whole using an aggregate weight statistic and then transfer that amount of
weight spread across the neighboring clauses in some fashion. We propose two
such methods here.

The first method applies the transfer rule to the average of the weights in the
neighborhood. However much weight needs to be transferred is thus split across
the neighbors evenly. We call this the “average transfer method.”

The second method is like the first, except the weight is taken from neighboring
clauses proportional to their weight. For example, if three neighbors had weight
2, 4, and 10, and if the amount of weight to be transferred is 4, then 0.5 weight
is taken from the first neighbor, 1 from the second, and 2.5 from the third. We
call this the “proportional transfer method.”

The randomness of line 16 will be present for these two transfer methods as
well. With a small probability p, a random satisfied clause is selected instead
of the current neighboring clause. Such randomness is important to prevent
particular neighborhoods from hoarding all the weight.

4.4 A restarting strategy

At times, DDFW may reach a local minimum in a state such that no matter
how many times the weight transfer rule is applied, DDFW remains in that local
minimum. One way this situation could occur is DDFW flips a variable, runs
out of unsatisfied weight reducing variables, transfers weight, and then flips the
same variable back, only to end up in the exact same state. Such a situation
is unlikely, especially given the elements of randomness present in the original
DDFW algorithm. Even so, DDFW is not immune to this and other pitfalls
that befall WU -minimizing algorithms, and no doubt there exist CNF formulas
that are adversarial for DDFW.

It may then be optimal to restore DDFW to a previous or more neutral state
when a local minimum has been occupied for a significant number of flips. Work
on this front has already been done to an extent: an extension to DDFW called
DDFW+ was published only a year after the original publication [26]. The core
idea of DDFW+ was to increment a counter every time a variable flip did not
improve the best number of unsatisfied clauses found so far. When the counter
reached a particular value (originally, the number of literals present in the CNF
formula), then the weights of all clauses were reset to fixed values (2 for satisfied
clauses, 3 for unsatisfied clauses—note that for DDFW+, winit = 2). Experiments
showed that DDFW+ had a 30-75% speedup when compared to DDFW on
some selected test instances from the 2005 SAT competition and on the original
DDFW test instance set. These results were not seen over all test instances,
however, and the experiments were run on what are now considered outdated
problem instances. Whether the exact method of reweighting in DDFW+ is
effective on modern benchmarks remains to be seen.

For this thesis, we propose a simpler restarting strategy: after a fixed number
of flips where the lowest number of unsatisfied clauses found has not improved,
set all weights back to their initial values and restore the assignment α to the
one causing the formula to have the fewest number of unsatisfied clauses, as

18



discovered on a previous flip. Restoring the clause weights back to winit may
break DDFW out of the local minimum by causing many new variables to be
flipped. We present initial results in Section 5.

4.5 An implementation of DDFW

In order to test DDFW and the modifications proposed above, I implemented
DDFW in C. The repository can be found at https://github.com/ccodel/ddfw.
The implementation allows for configuration of the various parameters of DDFW
at the command line. In particular, all of the following may be specified:

• Timeouts for a maximum number of flips and CPU seconds
• The initial weight to assign to each clause
• The multiplicative and additive constants used in the linear reweighting rule
• The clause groups and transfer methods
• The probability distribution to select unsatisfied weight reducing variables
• A number of times to rerun the algorithm with a fresh α
• A number of flips to wait in local minima before restarting

In addition, my implementation is modular and allows for easy slotting in of
additional variable selection heuristics, reweighting rules, and restarting strategies.
Also included in the repository is a set of Python scripts that parse DDFW
output and create .csv and .tsv files for data analysis.

My implementation uses a number of data structures to hold computed values
or to reduce the amount of computation needed at each step. While this makes my
implementation competitive with other SLS solvers on a wide array of problem
instances, the use of these data structures does lead to some issues. Most notably,
problem instances which have a small number of variables (≤ 100) and thousands
of clauses—meaning many large neighborhoods—cannot make it past the data
structure initialization phase in under fifteen minutes. I suspect that modifying
my implementation to handle problem instances such as these will lead to an
incredibly inefficient algorithm, as maximum weight neighbors must be calculated
over large neighborhoods at each local minimum. Any implementation of DDFW
is sure to run into this dilemma. Inherently, then, my implementation of DDFW
is not useful on these classes of problem instances.

I chose to implement DDFW from scratch because the only existing imple-
mentation of DDFW was implemented in the SLS framework UBCSAT [41].
While UBCSAT is easy to use, it is not easily extensible, and so many of the
modifications I proposed above could not be implemented. My resulting imple-
mentation of DDFW is competitive in speed to UBCSAT’s, even though mine
uses floating point operations. In addition, I claim that my implementation is
more modular and extensible than UBCSAT’s, and should serve as a starting
point for future investigation into DDFW and similar WU -minimizing algorithms.

19

https://github.com/ccodel/ddfw


5 Experimental results

We take DDFW and the modifications proposed in Section 4 and test them
against a set of modern hard benchmarks. All experiments were conducted on the
StarExec community servers [39]. The specs for the compute nodes can be found
at https://starexec.org/starexec/public/about.jsp. The compute nodes that ran
the experiments were Intel Xeon E5 cores with 2.4 GHz, and all experiments ran
with 8 GB of memory. Each configuration and set of parameters was run for 100
iterations with a five million flip timeout, unless otherwise noted.

Generally, DDFW was configured to initialize every clause’s weight to 100
(winit = 100). An initial weight of 100 was chosen to allow for easy conversion
between additive constants and a percentage of the initial weight transferred. To
compare to the original DDFW settings, under a value of winit = 100, the amount
of weight transferred from a satisfied neighboring clause Ck in a local minimum
is either 25 or 12.5, depending on whether W (Ck) > winit or W (Ck) ≤ winit.

In this section, we present the set of modern SAT problem instances used to
test DDFW, and we present and discuss the experimental results. The test set is
introduced in Section 5.1. To get a baseline against which to compare modifications
of DDFW, we present the performance of UBCSAT’s implementation of DDFW
against the test set in Section 5.2. We then turn to testing the modifications to
DDFW proposed in the previous section. The performance of DDFW for the
different weight-reducing variable selection probability distributions is discussed
in Section 5.3. An initial look at the linear weight transfer rule is given in
Section 5.4. We then examine the effects of the linear weight transfer rule under
different weight transfer methods in Section 5.5.

5.1 Benchmark instances

DDFW, like many algorithms, requires parameter tuning. A common way to
tune algorithmic parameters is to run the algorithm against a set of challenging
problem instances. The hope is that if the algorithm is tuned to perform well on
a set of challenging instances, then the algorithm will be tuned to perform well
more generally. However, it is important that the algorithmic parameters not be
overfitted to the test set. To prevent overfitting, we used a variety of problem
classes in our experiments.

All benchmarks used in this thesis can be found on GitHub8, with the ex-
ception of the random 3-SAT instances, which were taken from the 2018 SAT
Competition.9 The benchmarks are all satisfiable CNF formulas in DIMCAS
format.10 All instances in the test set are hard for state-of-the-art CDCL and
SLS solvers, although there were several SLS solvers from the 2018 SAT Compe-
tition that performed well on the random 3-SAT instances. The benchmarks are
comprised of

8https://github.com/marijnheule/benchmarks
9http://www.satcompetition.org/
10A description of the DIMACS format can be found at https://www.cs.utexas.edu/
users/moore/acl2/manuals/current/manual/index-seo.php/SATLINK DIMACS.

20

https://starexec.org/starexec/public/about.jsp
https://github.com/marijnheule/benchmarks
http://www.satcompetition.org/
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/SATLINK____DIMACS
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/index-seo.php/SATLINK____DIMACS


• Two encodings of the Pythagorean triples instance for n = 7824 [21]
• Ten selected encodings of matrix multiplication problems [20]
• Two encodings of the almost-squares-in-almost-square (asias) problem [7]
• Three encodings of Steiner triple problems [33]
• The 3-SAT random instances from the 2018 SAT Competition

Notably, all except for the random 3-SAT instances are structured instances,
which SLS solvers are generally not as performant on.

Because these are all challenging problem instances, DDFW does not lo-
cate satisfying assignments for many of these instances under a majority of
configurations. Thus, the metric for our experiments becomes that of MaxSAT:
minimizing the number of unsatisfied clauses that remain at timeout. A common
metric used in the experimental results below is the lowest u(F , α) achieved on
any flip before timeout. The reason for this metric is simple: we should expect that
those configurations that find assignments with the least number of unsatisfied
clauses before timeout are the ones that, if left to run for a greater number of
flips, will discover a satisfying assignment first.

5.2 UBCSAT baseline

Before making any modifications to DDFW, we first need a baseline of its
performance on the test set. The implementation in UBCSAT serves as that
baseline. The UBCSAT implementation of DDFW was run against each test
instance for 100 iterations, each with a timeout of five million flips. The results
are summarized in Table 1.

Table 1. Baseline results for DDFW on the test set using the UBCSAT imple-
mentation. The “Avg u(F , α)” column reports the average value of the lowest
number of unsatisfied clauses found for any flip before timeout at five million
flips. The “Min u(F , α)” column reports the lowest number of unsatisfied clauses
found for any flip over all 100 iterations. The table reports an average over the
matrix and 3-SAT problem instances due to their similarities in difficulty and
solve times. An overall average for the test suite is reported on the final row.

Instance Avg u(F , α) Min u(F , α) % solve

Matrix problems 57.02 38.1 0
asias-20 2.97 2 0
asias-34 14.02 10 0
bce7824 1.37 0 9
plain7824 1.63 0 9

Steiner-243-45 4.16 0 1
Steiner-405-70 4.98 0 4
Steiner-729-112 28.26 4 0
3-SAT problems 35.97 25.3 0

Overall 36.57 24.07 0.85

21



We see that the matrix, 3-SAT, and Steiner-729 problem instances are the
most challenging of the test set, while both encodings of the Pythagorean triples
problem (bce7824, plain7824) and the first two Steiner triples instances are the
easiest, as they are the only four with positive solve percentages. Overall, DDFW
gets to about 60 remaining unsatisfied clauses for the matrix instances, 35 for
the 3-SAT instances, and close to single digits for the remaining instances. Con-
figurations of DDFW which achieve lower u values and higher solve percentages
are thus desirable for this test set.

5.3 Variable selection probability distribution results

In Section 4.2, we explored two new probability distributions for how to select
unsatisfied weight reducing variables to flip. We examine the effects of flipping
variables according to those distributions here.

Naively, we should expect that the more the distribution favors flipping
unsatisfied weight reducing variables that reduce WU (F , α) the most, the better
DDFW will perform. And indeed, we see that this assumption unequivically
holds in Figure 1. For the original DDFW configuration in Algorithm 4, it is
clear that taking the best variable at each flip is advantageous.

0 0.5 1 1.5 2

·106

102

103

104

Flips

B
es
t
u

av
er
a
g
ed

Best

Proportional

Uniform

Fig. 1. A log plot of the lowest number of unsatisfied clauses found over a number
of flips. The u values are averaged over all problem instances, with 20 iterations
per problem instance. The original DDFW settings of a weight transfer of 2/1
were used, as in Algorithm 4. “Best” refers to flipping variables which reduce
WU the most. “Proportional” refers to selecting variables proportional to their
WU reduction. “Uniform” refers to a uniform probability distribution across all
unsatisfied weight reducing variables.

22



It is possible that the results in Figure 1 favor one of the two newly proposed
distributions under a different weight transfer rule. Yet it is my experience in
prior testing that there is almost always at least a factor of 2 difference between
the number of unsatisfied clauses at timeout for the original DDFW distribution
and for the two new distributions. If there is a particular configuration or range
of configurations under, say, the linear transfer rule that makes the proportional
distribution optimal, then I have not discovered it in my testing, and all indicators
point to such a configuration being brittle.

The results in Figure 1 are negative in the sense that both of the proposed
variable selection probability distributions do not improve DDFW beyond what
the original probability distribution does. However, such negative results are
important when scoping out which methods are most effective in the minimization
of WU .

Of course, these findings do not rule out the possibility that there exists a more
optimal variable selection heuristic for DDFW. For example, the configuration
change method of CCANR [9] mentioned in Section 3 is one such variable
selection heuristic that seeks to cut down on the amount of time an SLS algorithm
spends in a local minimum by choosing variables which prevents cycling. Adopting
that method for DDFW may show some promise, but it was not pursued in the
course of this thesis.

For the remainder of this thesis, we conduct the experiments using the original
DDFW distribution of always flipping the best variable during focused search.

5.4 Linear rule results

We now examine the effect of the linear weight transfer rule on the performance of
DDFW. As mentioned in Section 4.5, my implementation of DDFW allows for
two pairs of additive and multiplicative constants to be specified. One additive-
multiplicative pair is used to calculate how much weight should be tranferred
when the weight of the maximum-weight neighboring clause is at most winit. Let
us call this pair of constants (a≤, c≤). The other pair of constants is used when
the weight of the maximum-weight neighboring clause is strictly greater than
winit. Let us call that pair of constants (a>, c>).

Before investigating the full parameter space posed by the linear rule, let us
fix a≤ = a> = 1 and examine the effect of varying only the additive constants.
The original DDFW algorithm has c> > c≤ in order to transfer more weight
from neighboring clauses that have more weight to give. Over a large number of
flips, the effect of c> > c≤ serves to keep any one clause from acrruing too much
weight. If this reasoning is beneficial, then as we search for the best configuration
of (c>, c≤), we should expect the relationship c> > c≤ to hold.

This is surprisingly not always the case. The results of a parameter search
across c values of 5 to 50 in steps of 5 for each additive constant are summarized
in Table 2. 3D plots of the average number of unsatisfied clauses remaining at
timeout are shown in Figure 2.

Table 2 shows that it is not always optimal to have c> > c≤. In particular,
DDFW performed best on the matrix problem instances and the first of the asias

23



20

40

20

40

50

60

c>

c≤

A
v
er
a
g
e
m
in

u

20

40

20

40

20

40

60

c>

c≤

A
v
er
a
g
e
m
in

u

20

40

20

40

40

50

c>

c≤

A
v
er
a
g
e
m
in

u

20

40

20

40

30

40

c>

c≤

A
v
er
a
g
e
m
in

u

Fig. 2. 3D plots of the average lowest number of unsatisfied clauses found at a
timeout of five million flips for values of (c>, c≤) from 5 to 50 in steps of 5. Each
pair of c values was run for 100 iterations on each test instance, and the average
u values at timeout were taken. Reading from the top-left, the plots show the
parameter search on the matrix instances, the 3-SAT instances, all remaining
instances, and an overall average across all instances. Note that all minimums
occur with c> ≤ c≤, which is contrary to the original DDFW algorithm.

24



Table 2. Configurations of additive constants c> and c≤ from a parameter search
of values of 5 to 50 in steps of 5 which give the least number of unsatisfied
clauses before timeout at five million flips, on average. The best configuration of
(c>, c≤) pairs are reported for each instance or group of instances, and the best
configuration over all instances is reported at the bottom.

Instance c> c≤ Avg u(F , α) % solve

Matrix problems 5 25 43.91 0
asias-20 20 45 2.56 0
asias-34 40 30 11.79 0
bce7824 50 45 0.94 30
plain7824 50 50 1.12 27

Steiner-243-45 20 5 0.74 26
Steiner-405-70 35 5 0.96 4
Steiner-729-112 50 45 1.0 0
3-SAT problems 10 5 21.29 0

Overall 10 25 29.16 1.7

instances with a c> value at least 20% of winit less than c≤. Also, the overall best
configuration, on average, was (c>, c≤) = (10, 25). Together, these configurations
indicate that it is not always desirable to take a proportionally greater amount
of weight from neighbors with weight above winit than from those with weight at
most winit. One reason for this trend may lie in how clauses end up with more
than winit weight in the first place: by being unsatisfied in a local minimum.
Unsatisfied clauses in local minima represent the most difficult clauses to satisfy.
Transferring weight to these clauses in local minima makes DDFW prioritize
satisfying them. Once satisfied, it appears that DDFW should not be so hasty
in bringing their weight back to winit, as then the clauses lose their status as
difficult-to-satisfy. Yet the trend of c> > c≤ holds for many other instances in the
test set, including all Steiner triple instances and the 3-SAT random instances,
so the prior reasoning is not always the rule.

Table 2 also shows that optimal configurations vary across problem instances,
which is not surprisng. Having widely differing optimal parameter values is part
and parcel part of parameter tuning on singular test instances. In fact, further
modifications to DDFW could exploit this fact. For example, modifications to
DDFW that attempt to dynamically set the (a, c) values during runtime could
be developed to take advantage of this differing set of optimal configuration
values between instances. However, such a method was not investigated in this
thesis.

We now turn to analyzing the 3D plots in Figure 2. The first observation we
make is that the shape for the parameter search on the matrix instances was
markedly different than the ones for all other problem instances. Of course, the
matrix problems could be considered the most challenging of the test set, and
so the fact that small changes in c value had a larger impact on the u value is

25



not surprising. Yet the matrix instances show a distinctive bowl shape about
c≤ = 25 that the other plots do not emulate, and the effect of the c≤ is largest
in the matrix plot. The reason for this is likely due to the particular encoding for
the matrix problems.

Our next observation is that all plots generally show that there was an optimal
pair for (c>, c≤), and that perturbing that optimal configuration along either
axis resulted in a bowl shape. The mostly smooth descent to the optimal (c>, c≤)
is evidence that extending DDFW to include a method of dynamically finding
optimal (c>, c≤) or more general (a, c) pairs at runtime is a potentially fruitful
research direction and may lead to a more effective algorithm.

The third observation we will make is the tendency for u to be lowest about a
c> value of 10 or 15. The minimums of each plot, aside from the matrix plot, occur
at c> ∈ {10, 15}. As mentioned above, that c> has such a low value relative to
winit indicates that less weight should be taken from maximum-weight neighbors
that earned that weight by being unsatisfied in a local minimum.

The final observation we will make regarding these plots is a series of valleys
following a c> + 5 = c≤ line. The shape is persistent in all four plots, and in two
cases, this line of valleys leads to the minimum value. I speculate that the valleys
occur because the c> + 5 = c≤ line is the first place in the parameter search
where c> < c≤, and so the effect of moving less weight from of maximum-weight
neighbors is first exhibited along this line. The line of valleys could thus be
considered additional evidence that it is optimal for c> < c≤.

More qualitatively, keeping in mind the results of Table 2, the parameter
searches confirm the original DDFW publication to an extent. DDFW as it
appears in Algorithm 4 moves 12.5% and 25% of the initial weight value between
neighboring clauses in local minima. The parameter searches show that the
optimal percentages for these weight transfers hover in the 10-30% range as well,
although the exact values of (c>, c≤) differ.

We now test the symmetric version of what we did above for the multiplicative
parameters: we fix c> = c≤ = 0 and vary a> and a≤. We perform a parameter
search of a values from 0.05 to 0.5 in steps of 0.05. The parameter search is
analogous to the one for the additive parameters, as about 5 to 50% of winit

is transferred during each application of the linear rule. However, because the
values are multiplicative constants rather than additive, the exact amount of
weight transferred for each application of the linear rule will differ depending on
the weight of the neighboring clause. The findings of the multiplicative parameter
search are presented in Table 3 and Figure 3.

We first compare the results in Table 3 to those in Table 2. An initial look
shows that the best configurations for both parameter searches for each instance
or group of instances give almost identical u values. Notably, the average u value
for the matrix problems is 43.91 for the additive parameters versus 45.87 for the
multiplicative parameters, and the values for the asias, Pythagorean, and Steiner
instances are all roughly the same, excepting Steiner-729.

There are two major differences between the tables. The first is the multi-
plicative configurations had generally higher solve rates on the four instances

26



0.2

0.4

0.2

0.4

60

a>a≤

A
v
er
a
g
e
m
in

u

0.2

0.4

0.2

0.4

20

40

a>a≤

A
v
er
a
g
e
m
in

u

0.2

0.4

0.2

0.4

40

60

a>a≤

A
v
er
a
g
e
m
in

u

0.2

0.4

0.2

0.4

40

a>a≤

A
v
er
a
g
e
m
in

u

Fig. 3. 3D plots of the average lowest number of unsatisfied clauses found at
a timeout of five million flips for parameter searches of (a>, a≤) from 0.05 to
0.5 in steps of 0.05. Each pair of a values was run for 100 iterations on each
test instance, and the average u values at timeout were taken. Reading from the
top-left, the plots show the parameter search on the matrix instances, the 3-SAT
instances, all remaining instances, and an overall average across all instances. In
all four plots, the planar slope is almost solely determined by the a> value.

27



Table 3. Configurations of multiplicative constants a> and a≤ from a parameter
search of values of 0.05 to 0.5 in steps of 0.05 which give the least number
of unsatisfied clauses before timeout at five million flips, on average. The best
configuration of (a>, a≤) pairs are reported for each instance or group of instances,
and the best configuration over all instances is reported at the bottom.

Instance a> a≤ Avg u(F , α) % solve

Matrix problems 0.1 0.05 45.87 0
asias-20 0.1 0.35 2.37 0
asias-34 0.1 0.5 10.54 0
bce7824 0.3 0.3 1.03 31
plain7824 0.5 0.5 1.11 28

Steiner-243-45 0.05 0.05 0.32 70
Steiner-405-70 0.25 0.25 1.45 16
Steiner-729-112 0.05 0.4 8.71 0
3-SAT problems 0.05 0.05 11.21 0

Overall 0.05 0.05 23.82 2.96

with positive solve percentages. The Pythagorean solve percentages are almost
identical, but the solve percentages for the Steiner triples are three to four times
higher for the multiplicative configurations than the additive configurations.

The second major difference between the tables is that the multiplicative
configurations performed better on the 3-SAT random instances. Compared to
the best additive configuration, the multiplicative configuration of (a>, a≤) =
(0.05, 0.05) found assignments that had about 50% fewer unsatisfied clauses
at a timeout of five million flips. The improvement is strong evidence that
multiplicative configurations should be preferred for random SAT instances, as
there does not appear to be a similar improvement for structured instances.

Looking at the configuration value-pairs themselves, we see further evidence
that DDFW should not take away weight from maximum-weight neighbors too
quickly. Almost all a> values were at most 0.1, meaning that only 10% of the
clause’s weight was being transferred away in local minima. There are some
exceptions to this rule: the best configuration for the plain7824 instance was
(a>, a≤) = (0.5, 0.5), which is a much greater percentage of weight than 10%;
and the best matrix configuration was (a>, a≤) = (0.1, 0.05), meaning that more
weight is transferred from satisfied neighbors with weight above winit than below
it. But overall, the trend seems to hold.

We now consider Figure 3. Unlike for the additive parameter search, all four
plots show the same trend: that the value of a> almost exclusively determines
the performance of DDFW. Note that for any fixed a>, ranging across the a≤
values gives a nearly flat line. The only plot that deviates from the general shape
of the other three is the plot for the matrix instances. For that plot, there is a
greater range of (a>, a≤) values that gives u values close to the minimum. In
particular, the near-minimum configurations about (a>, a≤) = (0.05, 0.3) echo

28



the optimal configuration for the matrix problems in the additive parameter
search from Table 2.

The trend in all four plots is to have a minimum near (a>, a≤) = (0.05, 0.05).
Thus, an additional multiplicative parameter search was conducted on (a>, a≤)
from 0.005 to 0.05 in steps of 0.005. A 3D plot of the results is shown in Figure 4.

2

4

·10−2

2

4

·10−2

102

102.5

a>a≤

A
v
er
a
g
e
m
in

u

2

4

·10−2

2

4

·10−2

101

102

a>a≤
A
v
er
a
g
e
m
in

u

2

4

·10−2

2

4

·10−2

101.5

102

102.5

a>a≤

A
v
er
a
g
e
m
in

u

2

4

·10−2

2

4

·10−2

101.5

102

a>a≤

A
v
er
a
g
e
m
in

u

Fig. 4. 3D log plots of the average lowest number of unsatisfied clauses found at
a timeout of five million flips for values of (a>, a≤) from 0.005 to 0.05 in steps
of 0.005. Each pair of a values was run for 100 iterations on each test instance,
and the average u values at timeout were taken. Reading from the top-left, the
plots show the parameter search on the matrix instances, the 3-SAT instances,
all remaining instances, and an overall average across all instances. Note that the
axes are reversed from earlier figures, and that the u-axis is a log plot to better
show the change in u value at the minimum.

Figure 4 shows that most (a>, a≤) pairs near (0.05, 0.05) gives u value close
to the minimum for most instances. However, the only problem instances that
showed improvement over those configurations in the original multiplicative
parameter search were

29



• Steiner-243-45: optimal (a>, a≤) = (0.005, 0.035) with Avg u(F , α) = 0.03
and solve percentage 97, versus 0.32 and 70

• Steiner-405-70: optimal (a>, a≤) = (0.015, 0.01) with Avg u(F , α) = 1 but
solve percentage 0, versus 1.45 and 16

• Steiner-729-112: optimal (a>, a≤) = (0.005, 0.005) with Avg u(F , α) = 1.11,
versus 8.71

• 3-SAT problems: optimal (a>, a≤) = (0.04, 0.035) with Avg u(F , α) = 10.0
versus 11.21

These improvements are not suprising: those with optimal values near (a>, a≤) =
(0.05, 0.05) were the only ones that benefitted from the additional parameter
search. What is surprising is the improvement in the solve percentage for the
first Steiner instance and the drop in the u value for the third Steiner instance.

We now turn to performing a parameter search on both additive and multi-
plicative values. We set a> = a≤ and c> = c≤ as we vary the multiplicative and
additive values. We vary a from 0 to 0.5 in steps of 0.05 and c from -5 to 50 in
steps of 5. The results are shown in Figure 5 and Table 4.

Table 4. Configurations of multiplicative and additive constants a and c for
values of 0 to 0.5 in steps of 0.05 for a and values of -5 to 50 in steps of 5 for c
which give the least number of unsatisfied clauses before timeout at five million
flips, on average. The best configuration of (a, c) pairs are reported for each
instance or group of instances, and the best configuration over all instances is
reported at the bottom.

Instance a c Avg u(F , α) % solve

Matrix problems 0.1 5 45.29 0
asias-20 0 45 2.48 0
asias-34 0.05 10 11.14 0
bce7824 0.2 45 0.7 33
plain7824 0.25 50 0.99 22

Steiner-243-45 0.15 5 0.22 78
Steiner-405-70 0.1 50 1.42 37
Steiner-729-112 0.2 45 11.39 0
3-SAT problems 0.1 5 10.16 0

Overall 0.1 5 22.05 2.67

The results in Table 4 give similar u values to what we’ve seen before. Of
note is that of the three parameter searches, the combined additive-multiplicative
overall best configuration has the lowest average u value. These results indicate
that the linear rule is not worse than either an additive-only or a multiplicative-
only rule for weight transfer, as seen in DDFW and SAPS, and may in fact
be better for DDFW. Further work could examine a more in-depth parameter
search across all four four parameter values (a>, c>) and (a≤, c≤).

30



0

0.2

0.4

0

20

40

40

60

80

100

ac

A
v
er
a
g
e
m
in

u

0

0.2

0.4

0

20

40

50

100

ac

A
v
er
a
g
e
m
in

u

0

0.2

0.4

0

20

40

50

100

ac

A
v
er
a
g
e
m
in

u

0

0.2

0.4

0

20

40

50

100

ac

A
v
er
a
g
e
m
in

u

Fig. 5. 3D plots of the average lowest number of unsatisfied clauses found at
a timeout of five million flips for values of (a, c) of 0 to 0.5 in steps of 0.05 for
a and -5 to 50 in steps of 5 for c. Each pair of a and c values was run for 100
iterations on each test instance, and the average u values at timeout were taken.
Reading from the top-left, the plots show the parameter search on the matrix
instances, the 3-SAT instances, all remaining instances, and an overall average
across all instances. Not pictured is a jump up of the graph to u values at least
1000 at values near (0, 0).

31



We make an additional note about the configurations in Table 4: when
combined with additive constants, the preferred value for a is close to 0, meaning
that the beneficial effect of the multiplicative constant in the linear rule is small.
However, this may be an artifact of varying the a and c values together. A
parameter search across all four values may reveal better insight into the how
the a and c values interact.

To summarize our findings in this subsection: we explored the performance
of DDFW under three types of linear transfer rule. In all three cases, we found
an overall configuration for DDFW that performed better than the UBCSAT
baseline in Table 1. What’s more, the overall best configuration for the linear
rule was (a, c) = (0.1, 5) and achieved an average u value that was lower than
the average minimum u value in the UBCSAT baseline. Such a configuration
represents an overall 30% improvement in the number of unsatisfied clauses found
at timeout and a 3x improvement in the solve rate of DDFW on the test set.

5.5 Clause transfer group results

We next examine how transferring weight from larger groups of clauses in local
minima affects the performance of DDFW. We start by looking at applying the
additive-constants only linear rule to the entire neighborhood of an unsatisfied
clause.

A parameter search like the one in Figure 2 was performed with the individual
transfer method on the entire neighborhood. The results of the parameter search
are shown in Figure 6.

20

40

20

40

200

c>c≤

Fig. 6. A plot of the average number of unsatisfied clauses remaining after
two million flips when the individual transfer method is used on the entire
neighborhood. The average is taken over all test instances.

32



These results are initially disappointing. The minimum occurs at (c>, c≤) =
(45, 15) and takes a u value of 47.224, which is already worse than the UBCSAT
DDFW baseline in Section 5.2. However, a little bit of thought shows that this
parameter search is inappropriate for the transfer method being considered. In
a local minima, weight is being transferred from each satisfied neighbor clause.
Thus, if we want to transfer about the same amount of weight as in UBCSAT
DDFW, then we should take the amount of weight we want to transfer (suppose
25% of winit) and divide by the neighborhood size. An analysis of the test set
showed that the average neighborhood size was about 15. Therefore, we should
transfer about 2 units of weight from each clause in the neighborhood. A new
parameter search confirms that this is indeed the case. Refer to Figure 7.

246810
1

2

·106

0

200

400

c
Flips

Fig. 7. A plot of the lowest number of unsatisfied clauses on average over two
million flips. The individual transfer method is used here. Note the trough feature
between c values of 0 and 4. The minimum occurs at c = 0.75 with a u value of
20.346.

The minimum of the figure occurs at c = 0.75 with a u value of 20.346. When
compared to the UBCSAT baseline of 40.09, the individual transfer method
shows an almost 50% improvement on the performance of the algorithm. It is
clear that taking the same amount of weight, but taken from a larger number of
clauses, leads to better performance on the number of unsatisfied clauses.

33



6 Conclusions and future work

In this thesis, we examined the SLS SAT solver DDFW in-depth. We began
by reviewing the algorithm in its original form (Algorithm 4). We then turned
to modifying key portions of the algorithm to increase the effectiveness of how
DDFW chooses which variables to flip (Section 4.2) and how DDFW distributes
weight between clauses to escape local minima (Section 4.3). We took these
modifications and tested DDFW against a set of modern hard SAT benchmarks.
Parameter searches across the constants used in the linear transfer rule for
singular and neighborhood weight transfer gave generally successful results, and
optimal configurations for three types of parameter search each improved the
performance of DDFW when compared to a baseline performance from the
UBCSAT implementation of DDFW.

In particular, we found that the overall best configuration for the linear
transfer rule with a transfer of weight between the maximum-weight clause
and an unsatisfied clause was (a, c) = (0.1, 5). The configuration gave a 30%
improvement in the average best u value found over five million flips and gave a
3x increased solve rate for those instances with positive solve rates.

We also found that DDFW worked best when weight was taken from entire
neighborhoods, as opposed to a single satisfied neighbor. The best configuration
found in this thesis—transferring weight from all clauses in a neighborhood by
applying a linear transfer rule to each clause—achieved a 50% improvement over
the original DDFW algorithm.

The results presented above are heartening to the study of DDFW and similar
WU -minimizing SLS algorithms. However, this thesis was not exhaustive in its
investigation into these new methods of variable selection and clause reweighting
strategies. As remarked earlier, there are two directions for future work. The first
can focus on examining whether there is synergy between the “make-vs-break”
variable selection probability distribution of ProbSAT and the unsatisfied weight
reducing variable distribution of DDFW. The paper that introduced ProbSAT
reported that the effect of “make” could be ignored, instead favoring flipping
variables which do not cause satisfied clauses to become unsatisfied. Perhaps that
heuristic is effective in DDFW as well: flip variables which do not cause satisfied
clauses to contribute to the unsatisfied weight.

The second new research direction posed by this thesis is in which weight
transfer rule is optimal in local minimua. We found that spreading weight transfer
across a larger number of clauses caused better performance. However, the weight
transfer rule being applied was always the linear transfer rule, regardless of
the number of clauses it was applied to. Future work could focus on using
more complex weight transfer rules, such as exponential or logistic functions.
More complex functions would allow for more aggressive weight transfer, or
perhaps weight transfer more sensitive to the distribution of weight in the clause
neighborhood.

A third research direction, not immediately suggested by this thesis, but
always lurking in the SAT literature, is injecting more randomness into DDFW.
Randomness like in Walksat have been studied for u-minimizing algorithms, but

34



the literature lacks the same level of study for WU -minimizing algorithms. Work
into random flips or “random reweights” between clauses may show promise.

35



7 Acknowledgements

Through the course of my research, I connected with many bright minds and
communities that I thank here. First and foremost, I thank my advisor, Marijn
Heule. He was patient with me as he introduced me to the conventions of writing
research publications, the tricks of implementing a SAT solver, and the mindset
behind research and methodical scientific exploration. When I was deep in the
weeds of implementing a SAT solver or examining experimental data, he always
brought me back to the big picture with a simple question or observation.

Next, I thank the StarExec community for providing me with the computa-
tional resources needed to run my experiments.

Finally, I thank my friends. They’ve stuck with me through the course of
this thesis and this pandemic, and they have done so much to keep me sane and
happy this school year. I will miss them dearly as we all advance to our next
stage in life. “Ekwal pai four ekwal slai.”

References

1. Ahmed, T., Kullmann, O., Snevily, H.: On the van der waerden
numbers w(2;3,t). Discrete Applied Mathematics 174 (09 2014).
https://doi.org/10.1016/j.dam.2014.05.007

2. Balint, A., Schöning, U.: Choosing probability distributions for stochastic local
search and the role of make versus break. In: Cimatti, A., Sebastiani, R. (eds.)
Theory and Applications of Satisfiability Testing – SAT 2012. pp. 16–29. Springer
Berlin Heidelberg, Berlin, Heidelberg (2012)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume
185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD (2009)

4. Biere, A.: Lingeling, Plingeling, PicoSAT, and PrecoSAT at SAT race 2010. Tech.
Rep. 1 (2010), http://fmv.jku.at/papers/Biere-FMV-TR-10-1.pdf

5. Biere, A.: Yet another Local Search Solver and Lingeling and friends entering the
SAT Competition 2014. In: Balint, A., Belov, A., Heule, M.J.H., Järvisalo, M. (eds.)
Proceedings of SAT Competition 2014. vol. 2014, pp. 39–40. University of Helsinki
(2014)

6. Biere, A.: CaDiCaL, Lingeling, Plingeling, Treengeling, and YalSAT entering
the SAT competition 2017. Tech. rep. (2017), https://helda.helsinki.fi/bitstream/
handle/10138/224324/sc2017-proceedings.pdf

7. Braam, F., Moes, M., Suilen, E., Berg, D.V.D., Bhulai, S.: Almost squares in almost
squares: solving the final instance. In: DATA ANALYTICS 2016 (2016)

8. Brakensiek, J., Heule, M., Mackey, J., Narváez, D.: The resolution of keller’s
conjecture. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning.
pp. 48–65. Springer International Publishing, Cham (2020)

9. Cai, S., Luo, C., Su, K.: Ccanr: A configuration checking based local search solver for
non-random satisfiability. In: Heule, M., Weaver, S. (eds.) Theory and Applications
of Satisfiability Testing – SAT 2015. pp. 1–8. Springer International Publishing,
Cham (2015)

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ansi-c programs. In: Jensen,
K., Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems. pp. 168–176. Springer Berlin Heidelberg, Berlin, Heidelberg (2004)

36

http://fmv.jku.at/papers/Biere-FMV-TR-10-1.pdf
https://helda.helsinki.fi/bitstream/handle/10138/224324/sc2017- proceedings.pdf
https://helda.helsinki.fi/bitstream/handle/10138/224324/sc2017- proceedings.pdf


11. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings
of the Third Annual ACM Symposium on Theory of Computing. p. 151–158.
STOC ’71, Association for Computing Machinery, New York, NY, USA (1971).
https://doi.org/10.1145/800157.805047, https://doi.org/10.1145/800157.805047

12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5, 394–397 (1962)

13. Franco, J., Paull, M.: Probabilistic analysis of the davis putnam procedure
for solving the satisfiability problem. Discrete Applied Mathematics 5(1), 77–
87 (1983). https://doi.org/https://doi.org/10.1016/0166-218X(83)90017-3, https:
//www.sciencedirect.com/science/article/pii/0166218X83900173

14. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
Sat solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) Theory and Applications of Satisfiability Testing –
SAT 2007. pp. 340–354. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)

15. Gableske, O., Heule, M.J.H.: Eagleup: Solving random 3-sat using sls with unit
propagation. In: Sakallah, K.A., Simon, L. (eds.) Theory and Applications of
Satisfiability Testing - SAT 2011. pp. 367–368. Springer Berlin Heidelberg, Berlin,
Heidelberg (2011)

16. Gent, I.P.: On the stupid algorithm for satisfiability. Tech. rep., Tech. rep. APES-
02-1998, APES Research Group. Available (1998)

17. Goldberg, A.: Average case complexity of the satisfiability problem. In: Proceedings
of the 4th Workshop on Automated Deduction. pp. 1–6 (1979)

18. Heule, M.: Schur number five (2018), https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/16952

19. Heule, M.J.H.: Solving edge-matching problems with satisfiability solvers (2009)
20. Heule, M.J.H., Kauers, M., Seidl, M.: Local search for fast matrix multiplication.

In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing –
SAT 2019. pp. 155–163. Springer International Publishing, Cham (2019)

21. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube- and-conquer. In: Creignou, N., Le Berre, D.
(eds.) Theory and Applications of Satisfiability Testing – SAT 2016. pp. 228–245.
Springer International Publishing, Cham (2016)

22. Hoos, H.: On the runtime behavior of stochastic local search algorithms for SAT.
In: Proceedings of AAAI’99. pp. 661–666 (1999)

23. Hossen, M.S., Polash, M.M.A.: Implementing an efficient sat solver for
structured instances. In: 2019 Joint 8th International Conference on In-
formatics, Electronics Vision (ICIEV) and 2019 3rd International Confer-
ence on Imaging, Vision Pattern Recognition (icIVPR). pp. 238–242 (2019).
https://doi.org/10.1109/ICIEV.2019.8858519

24. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing:
Efficient dynamic local search for sat. In: Proceedings of the 8th International
Conference on Principles and Practice of Constraint Programming. p. 233–248. CP
’02, Springer-Verlag, Berlin, Heidelberg (2002)

25. Ishtaiwi, A., Abu Al-Haija, Q.: Dynamic initial weight assignment for maxsat.
Algorithms 14(4) (2021). https://doi.org/10.3390/a14040115, https://www.mdpi.
com/1999-4893/14/4/115

26. Ishtaiwi, A., Thornton, J., Anbulagan, Sattar, A., Pham, D.N.: Adaptive clause
weight redistribution. In: Benhamou, F. (ed.) Principles and Practice of Constraint
Programming - CP 2006. pp. 229–243. Springer Berlin Heidelberg, Berlin, Heidelberg
(2006)

37

https://doi.org/10.1145/800157.805047
https://www.sciencedirect.com/science/article/pii/0166218X83900173
https://www.sciencedirect.com/science/article/pii/0166218X83900173
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16952
https://www.mdpi.com/1999-4893/14/4/115
https://www.mdpi.com/1999-4893/14/4/115


27. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight
redistribution in local search for sat. In: van Beek, P. (ed.) Principles and Practice
of Constraint Programming - CP 2005. pp. 772–776. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

28. Kautz, H., Selman, B.: Planning as satisfiability. pp. 359–363 (01 1992)

29. Koutsoupias, E., Papadimitriou, C.H.: On the greedy algorithm for
satisfiability. Information Processing Letters 43(1), 53–55 (1992).
https://doi.org/https://doi.org/10.1016/0020-0190(92)90029-U, https:
//www.sciencedirect.com/science/article/pii/002001909290029U

30. Lynce, I., Marques-Silva, J.a.: Efficient haplotype inference with boolean satisfia-
bility. In: Proceedings of the 21st National Conference on Artificial Intelligence -
Volume 1. p. 104–109. AAAI’06, AAAI Press (2006)

31. Marques Silva, J.P., Sakallah, K.A.: GRASP-a new search algorithm for satisfiability.
In: Proceedings of International Conference on Computer Aided Design. pp. 220–227
(1996)

32. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of sat problems
(07 1992)

33. Resende, M., Toso, R., Gonçalves, J., Silva, R.: A biased random-key genetic
algorithm for the steiner triple covering problem. Optimization Letters 6, 605–619
(04 2011). https://doi.org/10.1007/s11590-011-0285-3

34. Schuurmans, D., Southey, F.: Local search characteristics of incom-
plete sat procedures. Artificial Intelligence 132(2), 121–150 (2001).
https://doi.org/https://doi.org/10.1016/S0004-3702(01)00151-5, https:
//www.sciencedirect.com/science/article/pii/S0004370201001515

35. Selman, B., Kautz, H., Cohen, B.: Local search strategies for satisfiability testing.
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge
26 (09 1999)

36. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search. In:
Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. 1).
p. 337–343. AAAI ’94, American Association for Artificial Intelligence, USA (1994)

37. Selman, B., Levesque, H., Mitchell, D.: A new method for solving hard satisfiability
problems. In: Proceedings of the Tenth National Conference on Artificial Intelligence.
p. 440–446. AAAI’92, AAAI Press (1992)

38. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard sat-
isfiability problems. Artificial Intelligence 81(1), 17–29 (1996).
https://doi.org/https://doi.org/10.1016/0004-3702(95)00045-3, https:
//www.sciencedirect.com/science/article/pii/0004370295000453, frontiers in
Problem Solving: Phase Transitions and Complexity

39. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infrastructure for
logic solving. In: International Joint Conference on Automated Reasoning. vol. 8562,
pp. 367–373. Springer International Publishing (2014)

40. Thornton, J., Pham, D.N., Bain, S., Ferreira, V.: Additive versus multiplicative
clause weighting for sat. In: Proceedings of the 19th National Conference on Artifical
Intelligence. p. 191–196. AAAI’04, AAAI Press (2004)

41. Tompkins, D.A.D., Hoos, H.H.: UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In: Hoos, H., Mitchell,
D. (eds.) Revised Selected Papers from the Seventh International Conference on
Theory and Applications of Satisfiability Testing (SAT 2004). Lecture Notes in
Computer Science, vol. 3542, pp. 306–320. Springer Berlin, Heidelberg (2005)

38

https://www.sciencedirect.com/science/article/pii/002001909290029U
https://www.sciencedirect.com/science/article/pii/002001909290029U
https://www.sciencedirect.com/science/article/pii/S0004370201001515
https://www.sciencedirect.com/science/article/pii/S0004370201001515
https://www.sciencedirect.com/science/article/pii/0004370295000453
https://www.sciencedirect.com/science/article/pii/0004370295000453


42. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Opium: Optimal package in-
stall/uninstall manager. In: 29th International Conference on Software Engineering
(ICSE’07). pp. 178–188 (2007). https://doi.org/10.1109/ICSE.2007.59

39


