
A Study of Divide and Distribute Fixed Weights

and its Variants∗

Cayden R. Codel and Marijn J. H. Heule

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
{ccodel,mheule}@cs.cmu.edu

Abstract

Divide and Distribute Fixed Weights (DDFW) is a stochastic local search Boolean
satisfiability (SAT) algorithm that has achieved a high level of performance on select
problem instances, including the Pythagorean triples instance for n = 7824. Yet despite its
success, DDFW has received little research interest, and its initial results are out of date
with respect to more modern SAT benchmarks. To address both those research needs, we
examine DDFW in depth and propose algorithmic variants based off of ideas from similar
SAT algorithms such as ProbSAT and SAPS. We then test these variants against a set
of modern hard benchmarks. We present three main findings. The first is a confirmation
that a greedy variable selection process is optimal for DDFW. The second is that a linear
weight transfer rule is more effective than a fixed additive one. Testing reveals a linear
transfer rule configuration that performs 40% better than the original DDFW algorithm.
The third is that it is sometimes more effective for unsatisfied clauses to borrow clause
weight from their entire neighborhood rather than a singular clause in local minima.

1 Introduction

Stochastic local search (SLS) is the SAT-solving paradigm of choice for random SAT instances
and for several classes of structured problem instances, such as the n-queens problem and some
graph coloring problems [18, 19]. When it comes to a majority of structured problem instances,
conflict-driven clause learning (CDCL) (cf. [3], Chapter 4) is usually the more effective solving
method. Yet every rule has its exceptions: CNF encodings of matrix multiplication problems [10]
that appear hard for CDCL solvers are solved by YalSAT [4], an SLS solver developed in 2014,
in minutes on a single CPU. Another exception is the SLS algorithm DDFW [15]. DDFW is
the only algorithm in the SLS-framework UBCSAT [22] able to solve the Pythagorean triples
n = 7284 instance [11] on a single CPU with a timeout of one million flips, and it does so in
under a minute. Such a quick solve time is remarkable when compared to the thousands of CPU
hours of CDCL search that were unsuccessful in solving the n = 7824 instance. The success of
DDFW on this challenging instance motivates our examination of its techniques in this paper.

At a high level, DDFW associates a weight to each clause and then attempts to find a
satisfying assignment by flipping variables that minimize the amount of weight held by the
unsatisfied clauses. When DDFW reaches a state where flipping any variable would increase
the amount of unsatisfied weight, it doesn’t flip a variable and instead increases the weight of
the unsatisfied clauses and decreases the weight of the satisfied clauses. Eventually, DDFW
returns to a state where it may flip variables to reduce the unsatisfied weight.

The method of assigning a weight to each clause and then minimizing the amount of
unsatisfied weight is not a new SLS solving technique: DDFW is derived from the ideas present
in the SLS algorithms SAPS (“Scaling and Probabilistic Smoothing”) [12] and PAWS (“Pure

∗Based on the research thesis available at https://contrib.andrew.cmu.edu/~ccodel/ddfw_thesis.pdf

https://contrib.andrew.cmu.edu/~ccodel/ddfw_thesis.pdf

Additive Weighting Scheme”) [21]. Both SAPS and PAWS flip variables that reduce the amount
of unsatisfied weight at each step, and both algorithms reweight clauses in local minima. The
novelty of DDFW is to reweight clauses along neighborhood relationships. Transferring weight
directly from satisfied clauses to unsatisfied clauses ensures that the total amount of clause
weight remains constant, thus ridding DDFW of the need for a weight renormalization step—a
step present in both SAPS and PAWS.

In this paper, we propose three DDFW variants. The first variant changes how DDFW
selects which variable to flip at each step. The second variant changes how DDFW computes
how much weight to transfer in local minima. The third variant builds on the second and changes
how DDFW moves weight within clause neighborhoods. We then test these variants against a
set of modern hard SAT benchmarks to see how the performance of the variants compares to
the base algorithm. We present three main findings:

• DDFW flips those variables that reduce the amount of weight held by the unsatisfied
clauses the most at each step. We propose two new distributions from which to select
variables to flip: a proportional distribution and a uniform distribution. Testing showed
that the original distribution is the optimal of the three.

• In local minima, DDFW distributes weight from satisfied clauses to unsatisfied clauses
in fixed constant amounts. We propose a linear transfer rule that transfers more weight
from a clause the more weight it has. Experiments show that certain configurations of
the linear rule perform 40% better and have a 3x solve rate when compared to the
original DDFW algorithm.

• In local minima, DDFW distributes weight from one satisfied clause to one unsatisfied
clause at a time. We propose a new method of transferring weight from entire neighborhoods.
Our experimental results show that distributing the same amount of weight across a larger
number of clauses gives a 45% improvement on the most challenging problem instances,
but does not perform as well on easier instances.

The organization of the paper is as follows: we cover preliminaries in Section 2. Prior work
on similar SLS solvers to DDFW is presented in Section 3. The base DDFW algorithm and
its variants are presented in Section 4. Our experimental setup and results are discussed in
Section 5. We make concluding remarks and propose future work in Section 6.

2 Preliminaries

A Boolean satisfiability (SAT) problem instance is a propositional formula F consisting of a
set of Boolean variables {x1, x2, ..., xn} and their negations joined by logical connectives. An
assignment of true and false values to the Boolean variables that makes the formula evaluate
to true is called a satisfying assignment. It is well known that any Boolean formula can be
efficiently converted to conjunctive normal form (CNF), where the formula F = {C1, C2, ..., Cm}
is expressed as an indexed set of disjunctions joined by conjunctions:

F =

m∧
j=1

|Cj |∨
k=1

vk

where vk ∈ {xi, xi} for some i ∈ [1, n].
Let us denote assignments of truth values to the n Boolean variables as α such that

α(xi) ∈ {⊤,⊥} for all i ∈ [1, n], with ⊤ representing true and ⊥ representing false. Let U(F , α)

give the set of clauses in F that have no literal which evaluates to true under α. We call U the
set of unsatisfied clauses in F . Let u(F , α) := |U(F , α)|.

Formulas in CNF have the nice property that flipping α(xi) from ⊥ to ⊤ makes any
clause containing xi evaluate to true. If a literal xi occurs in many clauses, then it is usually
advantageous for an SLS solver to set α(xi) = ⊤ (respectively, ¬xi and α(¬xi) = ⊥). It is thus
useful to relate clauses which share literals. If we fix a clause Cj ∈ F , then any clause Ck ∈ F ,
Ck ̸= Cj is a neighbor of Cj if |Cj ∩ Ck| > 0. If v ∈ Cj ∩ Ck, then we say that Cj and Ck are
neighbors on v. Let N(Cj) give the set of all neighboring clauses Ck ̸= Cj .

Some SLS algorithms associate a weight to each clause. Let us define a weighting function
W : F → R+ that assigns a positive real value to each clause. We write WU (F , α) to mean the
sum of weights of the unsatisfied clauses under an assignment α. Because W (Cj) > 0 for all
Cj ∈ F , then WU (F , α) = 0 indicates that α is a satisfying assignment. Therefore, flipping the
sign of variables that minimize WU is a greedy method of solving CNF formulas. Variables that,
when flipped, reduce WU are called unsatisfied weight reducing variables. Let R(F , α) be the
set of unsatisfied weight reducing variables in F under α. When |R(F , α)| = 0, then a local
minimum has been reached.

3 Prior work in SLS

The ideas in DDFW and the variants proposed in Section 4 are inspired by several SLS
algorithms. We discuss those SLS algorithms here. Specifically, we discuss ProbSAT, an SLS
algorithm that samples variables to flip from a larger distribution than DDFW does; and the
family of solvers preceding DDFW, including SAPS and PAWS.

3.1 A look at ProbSAT

Each SLS algorithm answers the question of how it selects which Boolean variables to flip
differently. Naively, solvers should prioritize making flips that cause the greatest decrease in
u(F , α). If there are no variables that decrease u when flipped, then a local minimum has been
reached. The space of heuristics to escape local minima is vast, and many strategies have been
proposed. One such strategy is to intentionally perturb α in a way that increases u by flipping a
varaible at random (a “random walk”). Walksat [17] is a simple but successful and influential
SLS algorithm that implements this idea.

Another successful strategy is implemented in ProbSAT [2]. Instead of flipping variables
which reduce u globally, ProbSAT selects an unsatisfied clause at random and then flips a
variable in that clause proportional to its “score” under a scoring function f . The paper that
introduced ProbSAT [2] explored a polynomial and an exponential scoring function dependent
on how many clauses become satisfied (“make”) and how many clauses become unsatisfied
(“break”) when flipping a variable. Interestingly, it was discovered that the role of “make” could
be ignored, and that an exponential function of only “break” scores was most effective.

The core idea of ProbSAT—generalizing the probability distribution that variables to flip
are chosen from—can be extended to DDFW. DDFW selects variables to flip greedily, but
different probability distributions may lead to a more effective algorithm.

3.2 A look at algorithms similar to DDFW

Many SLS algorithms attempt to minimize u(F , α) in their search for a satisfying assigment. Yet
u is not, a priori, the best metric to minimize. By assigning a weight to each clause, WU (F , α)

becomes a generalization of u(F , α), and SLS algorithms can minimize WU rather than u. A
greedy WU -minimizing algorithm is to flip an unsatisfied weight reducing variable at each step.
However, when |R(F , α)| = 0, then the SLS solver has arrived at a local minimum. The question
arises of how to escape it.

SAPS (“Scaling and Probabilistic Smoothing”) [12] is a WU -minimizing SLS algorithm that
answers that question with a method of clause reweighting. When a local minimum is reached,
the weights of all unsatisfied clauses clauses are mulitplied by a scaling factor a. Then, with
probability psmooth, all clause weights are “smoothed” to the average weight value via

W (Cj)← z ×W ′(Cj) + (1− z)×W (F)

where W ′(Cj) is the updated weight value equal to W (Cj) if Cj is satisfied and a×W (Cj) if

Cj is unsatisfied, and where z is a normalization factor between 0 and 1. W (F) denotes the
average clause weight before smoothing. In the publication introducing SAPS [12], the optimal
values for these parameters were a = 1.3, z = 0.8, and psmooth = 0.05. SAPS also had a random
walk probability of pwalk = 0.01. Pseudocode of SAPS is presented in Algorithm 1.

Algorithm 1: SAPS(psmooth, pwalk, a, z)

1 Input: n Boolean variables x1, ..., xn and a CNF formula F
2 for MAX-TRIES times do
3 α← randomly generated truth assignment
4 for MAX-FLIPS times do
5 if α satisfies F then return α
6 if |R(F , α)| > 0 then Flip a literal in R that reduces WU the most
7 else
8 if rand(0, 1) ≤ pwalk then Flip a random literal in F
9 else

10 for Cj ∈ U(F , α) do
11 W (Cj)← a×W (Cj)
12 if rand(0, 1) ≤ psmooth then
13 for Cj ∈ F do

14 W (Cj)← z ×W (Cj) + (1− z)×W (F)
15 return “No satisfying assignment”

Algorithm 1 can be modified in two main ways. One way is to modify how variables
from R(F , α) are selected to be flipped, as in line 6. CCAnr [6] contains ideas of a possible
modification. CCAnr incorporates the concepts of age and configuration checking in its variable
selection, the latter meaning preventing variable flips if the neighborhood has not changed since
the previous flip, preventing cycling. The heuristics of configuration changing appears to make
SLS algorithms more effective on structured problem instances. However, modifications in this
vein were not investigated in this paper.

Another way to modify Algorithm 1 is to change how clauses are reweighted in local minima.
SAPS uses a multiplicative updating rule with smoothing. PAWS (“Pure Additive Weighting
Scheme”) [21] is a successor of SAPS that uses an additive rule instead of a multiplicative one.
PAWS appeared to perform better than SAPS on several benchmarks, but the reason for this
was not clear. The authors remarked that PAWS was more efficient, as it used integers for
weights rather than floating-point values, and so it was able to perform more flips per second
than SAPS. Yet the authors also pointed out that the floating-point weights of SAPS were

more expressive than the integer weights of PAWS, and so SAPS performed better on easier
problem instances. Regardless of the exact reason for the discrepancy in performance, neither
PAWS nor SAPS dominated the other in terms of performance or solve rates.

We note that SAPS uses a purely mutliplicative reweighting rule and that PAWS uses
a purely additive one. The mixed successes of both algorithms suggests that more complex
reweighting functions are promising candidates for algorithmic variation.

4 DDFW and its variants

Divide and Distribute Fixed Weights (DDFW) [15] is an SLS algorithm that seeks to minimize
WU (F , α). It does so by assigning a weight to each clause. It then flips variables which reduce
the amount of weight held by unsatisfied clauses. When a local minimum is reached, weight
is moved from satisfied clauses to unsatisfied clauses via clause neighborhood relationships.
Eventually, enough weight will be transferred to the unsatisfied clauses that at least one variable
may be flipped to minimize WU , and flipping unsatisified weight reducing variables begins anew.

Despite DDFW being the only SLS algorithm, to our knowledge, that exploits clause
neighborhood relationships in local minima, remarkably little literature has been published on
DDFW or its techniques [13, 14]. DDFW is also not prevalent in the SAT solving community,
but it has seen some use as a black-box SAT solver in other publications [1, 8] and in Microsoft’s
open-source Z3 Theorem Prover [7].

In this section, we present the original DDFW algorithm. We then extend prior work by
proposing three algorithmic variants, which we test experimentally in Section 5.

4.1 DDFW

We present the DDFW algorithm as it appeared in its original publication [15]. After reading
in a Boolean formula F in CNF, DDFW assigns a fixed starting weight to every clause, i.e.
W (Cj) = winit for every Cj . The original publication posited that a value of winit = 8 was best.
At each step, a variable from R(F , α) which reduces WU the most is flipped. If |R(F , α)| = 0,
then with probability 0.15, a sideways move is taken, if one exists. Otherwise, DDFW determines
it has reached a local minimum, and so it moves to its reweighting phase.

To reweight, DDFW takes each unsatisfied clause Cj ∈ U(F , α) and moves weight from
one of its satisfied neighbors in N(Cj) to Cj . DDFW makes sure to not take too much weight
away from any one clause at a time: for a value of winit = 8, the most amount of weight moved
between clauses is 2. If there are no satisfied neighbors of weight at least winit, then a random
satisfied clause of sufficient weight is used instead for the weight transfer.

The above algorithmic description is presented in detail in Algorithm 2.

Not mentioned in the original publication but appearing in the code supplementing it was
the random walk in line 13. With small probability p = 0.01, the maximum-weight neighbor
Ck is discarded, and a random satisfied clause with weight at least winit is chosen instead. The
implementation used for experimentation included this random walk.

Two features of DDFW distinguish it from similar SLS algorithms. The first is in how
DDFW applies its reweighting rule. Similar solvers escape local minima using a two-step
process: first, the weights of the unsatisfied clauses are increased; and second, all weights are
normalized so as to keep the total weight from growing too large. DDFW combines these two
steps into one by moving weight directly from satisfied clauses to unsatisfied clauses. In this
way, DDFW obeys a kind of weight conservation law, and so the total weight remains constant.

Algorithm 2: DDFW

1 Input: n Boolean variables x1, ..., xn and a CNF formula F
2 Initialize each clause’s weight to winit

3 for MAX-TRIES times do
4 α← randomly generated truth assignment
5 for MAX-FLIPS times do
6 if α satisfies F then return α
7 if |R(F , α)| > 0 then Flip a literal in R which decreases WU the most
8 else if rand(0, 1) ≤ 0.15 and a sideways move exists then
9 Flip a literal which does not increase WU

10 else
11 for Cj ∈ U(F , α) do
12 Ck ← argmaxCk

{W (Ck) : Ck ∈ N(Cj), Ck satisfied}
13 if W (Ck) < winit or rand(0, 1) ≤ 0.01 then
14 Ck ← random satisfied clause with W (Ck) ≥ winit

15 if W (Ck) > winit then Transfer a weight of two from Ck to Cj

16 else Transfer a weight of one from Ck to Cj

17 return “No satisfying assignment”

The second distinguishing feature of DDFW is in which satisfied clauses share weight.
DDFW exploits the properties of neighborhoods: namely, that flipping a shared literal helps all
clauses that are neighbors on that literal by increasing the number of literals in those clauses
that are true. Thus, borrowing weight from satisfied neighbors to satisfy an unsatisfied clause
will never harm any of the neighbors from which that weight was borrowed. DDFW explicitly
creates these “alliances” between neighbors in how it transfers weight in a local minimum.
DDFW chooses to increase the weight of all unsatisfied clauses in local minima, as opposed to
decreasing the weight of all satisfied clauses, due to speedup achieved in practice, as the value
of u(F , α) is often low after thousands of flips.

4.2 A variation of the variable selection probability distribution

Line 7 in Algorithm 2 selects a random literal in R(F , α) that causes the greatest decrease in
WU when flipped. However, we need not greedily choose which variable to flip. We can instead
apply a probability distribution determined by a function f as in ProbSAT [2]. In this way, we
may explore which method of unsatisfied weight reducing variable selection is optimal.

We propose two additional probability distributions here. The first is a uniform distribution:
flip a random literal in R. The second is a weighted distribution proportional to the amount
flipping the literal would decrease WU by. Under this distribution, literals which decrease WU

more tend to be flipped more often. A directly linear function f is most straightforward. Future
work could consider an exponential distribution, as in ProbSAT. Line 7 then becomes

Flip xi according to probability
∆W (xi)∑
i ∆W (xi)

, xi ∈ R(F , α)

where ∆W (xi) is the reduction of unsatisfied weight WU (F , α) if the value of α(xi) is flipped.

4.3 A variation of the weight transfer rule

Lines 15 and 16 in Algorithm 2 transfer fixed weights of 2 and 1 from satisfied neighboring clauses
to unsatisfied clauses in local minima. For a value of winit = 8, the percentage of a clause’s
weight moved in a single transfer is capped at 25% of winit. But there may be situations where
local minima can only be escaped after multiple weight transfers, such as when a supermajority
of the clause weight is held by the satisfied clauses. In these situations, it is more advantageous
to transfer larger amounts of weight at a time to short-circuit the need for multiple transfers. A
more complex weight transfer rule, dependent on the amount of weight in the neighborhood,
could solve this problem and may lead to a more effective reweighting strategy.

There are two immediate ways of moving more weight in a single transfer: take more from
the maximum-weight clause, or take weight from a larger number of clauses. For the first,
we consider a linear transfer rule dependent on a multiplicative parameter a and an additive
parameter c. A linear rule is chosen to capture the reasoning in the above paragraph: when
there is more weight available in the maximum-weight clause, more weight should be transferred.
Lines 15 and 16 then become:

Transfer a weight of (a×W (Ck)) + c from Ck to Cj

Note that this rule does not differentiate between W (Ck) above or at most winit. On the one
hand, the linear rule dispenses with this problem: for 0 < a < 1, when the amount of weight
W (Ck) draws closer to or falls below winit, less weight is transferred, which approximates the
effect of the original transfer rule. But on the other hand, there may be utility in switching
between transfer rules in high-weight and low-weight scenarios. The implementation of DDFW
we used for experimentation allows for two sets of linear parameters to be specified: one pair to
be applied when W (Ck) > winit, and one pair to be applied when W (Ck) ≤ winit.

Of course, there are plenty of functions more expressive than linear ones that may be used
for the weight transfer rule. Polynomials of higher order, logistic functions, and exponential
functions are all candidate transfer rules as well. But the parameter space posed by a and c in
combination with the variant proposed below is large enough without introducing new classes of
functions, and so we leave exploration into these alternative transfer rules for future work.

The second way of moving more weight in a single transfer is to take weight from a larger
number of clauses. While it is certainly the case that a parameter t could be introduced to
control the number of maximum-weight neighbors to take weight from, any fixed t runs into the
same problem that t = 1 does in DDFW: a static parameter does not allow for reaction to the
current state of the algorithm. For example, in situations where an unsatisfied clause has an
above-average sized satisfied neighborhood, then satisfying the clause would potentially help an
above-average number of clauses. Thus, more weight should be transferred to that clause. To
that end, we will consider applying the transfer rule to all satisfied clauses in the neighborhood.

We have some choice in how we apply the transfer rule to these clauses. Ultimately, we want
to transfer weight from every applicable clause to the unsatisfied clause. We could do so by
applying the transfer rule to each individual clause. We call this kind of rule application the
“individual transfer method.” But we could also compute how much weight we’d like to take
from the neighborhood as a whole using an aggregate weight statistic and then transfer that
amount of weight spread across the neighboring clauses proportional to that clause’s weight.
We call this kind of rule application the “proportional transfer method.”

5 Experimental results

To test DDFW and the modifications proposed above, we implemented DDFW in C. The
repository can be found at https://github.com/ccodel/ddfw. The implementation allows
for configuration of the various parameters of DDFW at the command line. In addition,
our implementation is modular and allows for easy slotting in of additional variable selection
heuristics and reweighting rules.

We take DDFW and the variants proposed in Section 4 and test them against a set of modern
hard benchmarks. All experiments were conducted on the StarExec community servers [20].
The specs for the compute nodes can be found at https://starexec.org/starexec/public/
about.jsp. The compute nodes that ran the experiments were Intel Xeon E5 cores with 2.4
GHz, and all experiments ran with 8 GB of memory. Each configuration and set of parameters
was run for 100 iterations with a five million flip timeout, unless otherwise noted. We thank
the StarExec community for providing the computational resources. In all experiments except
for the UBCSAT baseline, the initial clause weight winit = 100 to allow for easy conversion to
percentages of winit transferred in local minima.

5.1 Benchmark instances and UBCSAT baseline

All benchmarks used can be found at https://github.com/marijnheule/benchmarks, with the
exception of the random 3-SAT instances, which were taken from the 2018 SAT Competition [9].
The benchmarks are all satisfiable CNF formulas. All instances in the test set are hard for state-
of-the-art CDCL and SLS solvers. The benchmarks are: two encodings of the Pythagorean triples
instance for n = 7824 [11], ten encodings of matrix multiplication problems [10], two encodings
of the almost-squares-in-almost-square (asias) problem [5], three encodings of Steiner triple
problems [16], and the ten 3-SAT random instances from the 2018 SAT Competition. Notably, all
except for the random 3-SAT instances are structured instances, which SLS solvers are generally
not as performant on. Because these are all challenging problem instances, DDFW does not
locate satisfying assignments for many of these instances under a majority of configurations.
Thus, the metric for our experiments becomes that of MaxSAT: minimizing the number of
unsatisfied clauses that remain at timeout. A common metric used in the experimental results
below is the lowest u(F , α) achieved on any flip before timeout.

DDFW is implemented in the SLS framework UBCSAT [22]. We used UBCSAT’s im-
plementation of DDFW as a performance baseline. The results are summarized in Table 1.
The baseline shows that the matrix, 3-SAT, and Steiner-729 problem instances are the most
challenging, while both encodings of the Pythagorean triples problem and the first two Steiner
triples instances are the easiest, as they are the only four with positive solve percentages.

5.2 Variable selection probability distribution variation results

In Section 4.2, we explored two new probability distributions for how to select unsatisfied
weight reducing variables to flip. We examine the effects of flipping variables according to those
distributions here. Naively, we should expect that the more the distribution favors flipping
unsatisfied weight reducing variables that reduce WU (F , α) the most, the better DDFW will
perform. And indeed, we see that this assumption unequivocally holds in Figure 1.

It is possible that DDFW favors one of the two newly proposed distributions under a different
weight transfer rule. Yet it is our experience that the original variable selection distribution is
the optimal of the three even under the linear transfer rule variants. Of course, these findings
do not rule out the possibility that there exists a more optimal variable selection heuristic for

https://github.com/ccodel/ddfw
https://starexec.org/starexec/public/about.jsp
https://starexec.org/starexec/public/about.jsp
https://github.com/marijnheule/benchmarks

Table 1: Baseline results for DDFW on the test set using the UBCSAT implementation. The
“u” column reports the average value of the lowest number of unsatisfied clauses found for any
flip before timeout at five million flips. The “Min u” column reports the lowest number of
unsatisfied clauses found for any flip over all 100 iterations. The table reports an average over
the matrix and 3-SAT problem instances due to their similarities in difficulty and solve times.

Instance u Min u % solve

matrix 57.02 38.1 0
asias-20 2.97 2 0
asias-34 14.02 10 0
bce7824 1.37 0 9
plain7824 1.63 0 9
Steiner-243 4.16 0 1
Steiner-405 4.98 0 4
Steiner-729 28.26 4 0

3-SAT 35.97 25.3 0

Overall 36.57 24.07 0.85

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·106

102

103

104

Flips

B
es
t
u

av
er
a
ge
d

Best
Proportional
Uniform

Figure 1: A log plot of the lowest number of unsatisfied clauses found over a number of flips. The
u values are averaged over all problem instances, with 20 iterations per problem instance. “Best”
refers to flipping variables which reduce WU the most. “Proportional” refers to selecting variables
proportional to their WU reduction. “Uniform” refers to a uniform probability distribution
across all unsatisfied weight reducing variables.

DDFW. For example, the configuration change method of CCAnr [6] mentioned in Section 3
is one such variable selection heuristic that may help DDFW. Due to the results in Figure 1,
we conduct the remaining experiments using the original distribution of always flipping the best
unsatisfied weight reducing variable whenever |R(F , α)| > 0.

5.3 Linear rule results

In Section 4.3, we proposed a linear weight transfer rule to be used in local minima. We examine
the performance of DDFW using that linear transfer rule here.

Our implementation of DDFW follows the distinction made by the originalDDFW algorithm

Table 2: Results from three parameter searches across (c>, c≤), (a>, a≤), and (a>, c>)/(a≤, c≤)
configurations. Each row presents the optimal configuration for that problem instance or set of
instances discovered in each parameter search. The u columns report the average lowest u(F , α)
value found before timeout at five million flips. The % column reports the percentage of the 100
iterations that solved the instance by the configuration.

Instance (c>, c≤) u % (a>, a≤) u % (a, c) u %

matrix (5, 25) 43.91 0 (0.1, 0.05) 45.87 0 (0.1, 5) 45.29 0
asias-20 (20, 45) 2.56 0 (0.1, 0.35) 2.37 0 (0, 45) 2.48 0
asias-34 (40, 30) 11.79 0 (0.1, 0.5) 10.54 0 (0.05, 10) 11.14 0
bce7824 (50, 45) 0.94 30 (0.3, 0.3) 1.03 31 (0.2, 45) 0.7 33
plain7824 (50, 50) 1.12 27 (0.5, 0.5) 1.11 28 (0.25, 50) 0.99 22
Steiner-243 (20, 5) 0.74 26 (0.05, 0.05) 0.32 70 (0.15, 5) 0.22 78
Steiner-405 (35, 5) 0.96 4 (0.25, 0.25) 1.45 16 (0.1, 50) 1.42 37
Steiner-729 (50, 45) 1.0 0 (0.05, 0.4) 8.71 16 (0.2, 45) 11.39 0

3-SAT (10, 5) 21.29 0 (0.05, 0.05) 11.21 0 (0.1, 5) 10.16 0

Overall (10, 25) 29.16 1.7 (0.05, 0.05) 23.82 2.96 (0.1, 5) 22.05 2.67

and applies a different linear rule depending on whether W (Cj) > winit or W (Cj) ≤ winit. Let
us call the pair of additive-multiplicative parameters used in the former case (a>, c>) and the
pair used in the latter case (a≤, c≤). To investigate the effects of these additive-multiplicative
pairs, we perform three parameter searches. The first fixes a> = a≤ = 1 and varies the c values
from 5 to 50 in steps of 5. In this way, the parameter search investigates the effect of only the
additive constants, and so it can be viewed as a search on the PAWS heuristic. The second
parameter search fixes c> = c≤ = 0 and varies the a values from 0.05 to 0.5 in steps of 0.05.
This parameter search investigates the effects of only the multiplicative constants and can be
viewed as a search on the SAPS heuristic. The final parameter search collapses the two linear
rule pairs into one by setting a> = a≤ and c> = c≤. The a values are ranged from 0.05 to 0.5
in steps of 0.05, and the c values are ranged from 5 to 50 in steps of 5. All configurations were
tested against the test set for 100 iterations with a timeout of five million flips. The averaged
lowest u(F , α) values and solve percentages for all three parameter searches are presented in
Table 2. 3D plots of the parameter searches are displayed in Figure 2.

We make several observations about Table 2. The first is that there is evidence to suggest
that it is not always optimal to transfer more weight from satisfied neighboring clauses with
weight W (Cj) > winit. Looking at the column for the (c>, c≤) parameter search, we see that the
optimal configurations for the matrix problems, asias-20, the 3-SAT problems, and the overall
best average configuration all had c> < c≤. A reason for this trend could be that clauses with
weight greater than winit received that weight by being unsatisfied in a local minimum and so
represent harder-to-satisfy clauses. Thus, DDFW should not be too hasty in transferring weight
off of those clauses to maintain those clauses’ status as harder to satisfy. However, the evidence
for this trend is not too strong: there are fewer (a>, a≤) configurations that follow this trend,
and when a> = a≤, as in many optimal instance configurations, the effective result is that more
weight is transferred when a> is applied compared to when a≤ is. We speculate that weight
transfer rules that factor in “difficulty in satisfying” may present a promising research direction.

The second observation we make is that all three parameter searches support the assumptions
made in the original DDFW publication regarding how much weight should be transferred in

20

40

20

40

50

60

c>

c≤

A
ve
ra
g
e
m
in

u
n
sa
t

20

40

20

40

30

40

c>

c≤

u

0.2

0.4

0.2

0.4

60

a>a≤

A
ve
ra
ge

m
in

u
n
sa
t

0

0.2

0.4

0

20

40

50

100

ac

u

Figure 2: 3D plots of the three parameter searches performed on the linear rule. The u
axis measures the average lowest number of unsatisfied clauses found before a timeout of five
million flips. Reading from the top-left, the plots are of the constant parameter search on the
matrix instances alone, the constant parameter search over all test instances, the multiplicative
parameter search on all test instances, and the full linear parameter search on all test instances.
Other than the matrix-only plot, the general shapes of the plots are shared across instances.

local minima. DDFW as in Algorithm 2 transfers 12.5% and 25% of winit from satisfied clauses
to unsatisfied clauses. Most of the configurations in Table 2 transfer 15-35% of winit, which is
close to the original transfer percentages.

The third observation is that all three parameter searches show an overall configuration that
performs much better than the UBCSAT baseline. The best of the three overall configurations,
(a, c) = (0.1, 5), achieves a u value of 22.05 and a solve rate of 2.67%, which represents a 40%
improvement and a 3x solve rate when compared to the UBCSAT baseline. These results
strongly indicate that the linear rule is more successful than the fixed rule of Algorithm 2.

The final observation we make is that it is usually optimal to keep the multiplicative constant
a smaller than the additive constant c. This trend holds when comparing the additive-only
parameter search to the multiplicative-only parameter search and when looking at the (a, c)
pairs in the third parameter search. The tendency for a to be close to 0 indicates that while
taking more weight from clauses with greater weight values helps DDFW, the effect is beneficial
only in small amounts.

We now turn to examining the 3D plots in Figure 2. The top-left plot in Figure 2 shows
that for the additive-only parameter search on only the matrix instances, the value of c≤ was
more influential on the performance than the value of c>, but this trend did not hold over

1

2

3

4

1

2

3

4

100

c>c≤

u

2

4

1
2

3
4

50

60

70

a>
a≤

u

Figure 3: 3D plots of the average lowest number of unsatisfied clauses found at a timeout of
five million flips over the entire test set. The left plot shows the (c>, c≤) parameter search on
all test instances when the weight is distributed over the neighborhood proportional to each
clause’s weight, and the right plot shows the parameter search when the linear rule is applied to
each individual clause. Note the change in axis between the two plots.

the entire test set, as shown in the top-right plot. The bottom-left plot shows that in the
multiplicative-only parameter search, the value of a> was more influential on the u value than
a≤, which is further evidence that DDFW should not take away weight from clauses with weight
above winit too quickly. Finally, the bottom-right plot echoes what is in Table 2: that optimal
(a, c) pairs have relatively small values but that the effect of the optimal pairs is to transfer
15-35% of winit from each clause in a local minimum.

5.4 Linear rule transfer method results

We next test the variant of DDFW that applies the weight transfer rule to every satisfied clause
in the neighborhood. We perform a parameter search on only the additive constants (c>, c≤)
across the two transfer methods (individual and proportional). Because the rule is being applied
to many more clauses than one, we vary (c>, c≤) across smaller values that, when mutliplied by
the average clause neighborhood size, approximates the amount of weight transferred in the
typical linear rule. The values range from 0.4 to 4 in steps of 0.4. Table 3 summarizes the best
configurations found in the parameter search. 3D plots of these parameter searches are shown
in Figure 3.

The results in Table 3 are initially disappointing. The u values for the overall best average
configurations do not even best those in the UBCSAT baseline in Table 1. However, the most
interesting feature of Table 3 is that both the proportional and individual transfer methods
achieve u values of about 30 on the matrix instances, which are the most challenging instances
of the test set. When compared against the three linear rule parameter searches in Table 2, we
see that the new transfer methods achieve a 33% improvement over the typical linear rule and
about a 45% improvement over the UBCSAT baseline.

The lack of consistency in the results in Table 3 may be due to the disparate clause
neighborhood sizes between the instances of the test set. For example, the average clause
neighborhood size of the matrix instances was about 15 clauses, whereas the average neighborhood
size of the 3-SAT instances was about 4. Future work could focus on how to tune how much
weight should be transferred within clause neighborhoods of different sizes.

Table 3: Results from two additive-constant only parameter searches on the two proposed
neighborhood transfer variants. The “u” column reports the average value of the lowest number
of unsatisfied clauses found for any flip before timeout at five million flips. The table reports
an average over the matrix and 3-SAT problem instances due to their similarities in difficulty
and solve times. The “% solve” column is omitted because no optimal configuration solved any
instance on any of the 100 iterations.

Transfer method Proportional Individual

Instance (c>, c≤) u (c>, c≤) u

matrix (0.4, 0.8) 27.00 (4.0, 3.6) 33.91
asias-20 (0.8, 0.4) 2.79 (3.6, 3.2) 3.48
asias-34 (1.6, 3.6) 16.06 (2.4, 3.2) 24.19
bce7824 (2.0, 2.8) 11.39 (3.6, 2.8) 7.84
plain7824 (0.8, 0.8) 11.24 (4.0, 2.4) 8.97
Steiner-243 (3.2, 0.8) 1.2 (3.6, 2.4) 1.37
Steiner-405 (4.0, 0.8) 1.68 (1.6, 1.6) 1.8
Steiner-729 (3.2, 0.4) 2.13 (3.2, 0.4) 1.92

3-SAT (0.8, 0.4) 94.02 (1.6, 0.4) 76.26

Overall (0.8, 0.4) 46.91 (3.6, 2.8) 45.29

6 Conclusions and future work

The results presented above are heartening to the study of DDFW and similar WU -minimizing
SLS algorithms. We showed that through simple modification of the weight transfer method
used to escape local minima, large improvements in the lowest number of unsatisfied clauses
found before timeout and in solve rates can result.

However, this study was not exhaustive in its investigation of the three proposed variants
to DDFW. As a result, there are many directions for future work. Already remarked above
is the incorporation of configuration change methods from CCAnr into the variable selection
distribution used by DDFW to choose which variables to flip. Also mentioned above is the
opportunity for more complex transfer rules, such as higher-order polynomials or rules that take
into account additional factors of clause neighborhood size, to be investigated in future work.

Future work could also focus on the effects of distributing clause weight across local structures
in local minima. In this study, we focused on borrowing weight from entire satisfied neighborhoods
instead of a single satisfied clause. Yet additional heuristics may be more effective, such as
different underlying weight transfer rules or distributing weight across different local structures
than clause neighborhoods. The space of heuristics to explore is vast, and as already shown in
this study, slight modifications to the DDFW algorithm can result in significant improvements.

References

[1] Tanbir Ahmed, Oliver Kullmann, and Hunter Snevily. On the van der waerden numbers w(2;3,t).
Discrete Applied Mathematics, 174, 09 2014.

[2] Adrian Balint and Uwe Schöning. Choosing probability distributions for stochastic local search and
the role of make versus break. In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and
Applications of Satisfiability Testing – SAT 2012, pages 16–29, Berlin, Heidelberg, 2012. Springer.

[3] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability: Volume 185 Frontiers
in Artificial Intelligence and Applications. IOS Press, NLD, 2009.

[4] Armin Biere. Yet another Local Search Solver and Lingeling and friends entering the SAT
Competition 2014. In A. Balint, A. Belov, M. J. H. Heule, and M. Järvisalo, editors, Proceedings
of SAT Competition 2014, volume 2014, pages 39–40. University of Helsinki, 2014.

[5] F. Braam, M. Moes, E. Suilen, D. V. D. Berg, and S. Bhulai. Almost squares in almost squares:
solving the final instance. In DATA ANALYTICS 2016, 2016.

[6] Shaowei Cai, Chuan Luo, and Kaile Su. Ccanr: A configuration checking based local search solver
for non-random satisfiability. In Marijn Heule and Sean Weaver, editors, Theory and Applications
of Satisfiability Testing – SAT 2015, pages 1–8, Cham, 2015. Springer.

[7] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In C. R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008. Springer.

[8] Marijn J. H. Heule. Solving edge-matching problems with satisfiability solvers. 2009.

[9] Marijn J. H. Heule, Matti Järvisalo, and Martin Suda. Sat competition 2018. Journal on
Satisfiability, Boolean Modeling and Computation, 11:133–154, 2019.

[10] Marijn J. H. Heule, Manuel Kauers, and Martina Seidl. Local search for fast matrix multiplication.
In Mikoláš Janota and Inês Lynce, editors, Theory and Applications of Satisfiability Testing – SAT
2019, pages 155–163, Cham, 2019. Springer.

[11] Marijn J. H. Heule, Oliver Kullmann, and Victor W. Marek. Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In Nadia Creignou and Daniel Le Berre, editors,
Theory and Applications of Satisfiability Testing – SAT 2016, pages 228–245, Cham, 2016. Springer.

[12] Frank Hutter, Dave A. D. Tompkins, and Holger H. Hoos. Scaling and probabilistic smoothing:
Efficient dynamic local search for sat. In Proceedings of the 8th International Conference on
Principles and Practice of Constraint Programming, CP ’02, page 233–248, Berlin, Heidelberg,
2002. Springer-Verlag.

[13] Abdelraouf Ishtaiwi and Qasem Abu Al-Haija. Dynamic initial weight assignment for maxsat.
Algorithms, 14(4), 2021.

[14] Abdelraouf Ishtaiwi, John Thornton, Anbulagan, Abdul Sattar, and Duc Nghia Pham. Adaptive
clause weight redistribution. In Frédéric Benhamou, editor, Principles and Practice of Constraint
Programming - CP 2006, pages 229–243, Berlin, Heidelberg, 2006. Springer.

[15] Abdelraouf Ishtaiwi, John Thornton, Abdul Sattar, and Duc Nghia Pham. Neighbourhood clause
weight redistribution in local search for sat. In Peter van Beek, editor, Principles and Practice of
Constraint Programming - CP 2005, pages 772–776, Berlin, Heidelberg, 2005. Springer.

[16] Mauricio Resende, Rodrigo Toso, José Gonçalves, and Ricardo Silva. A biased random-key genetic
algorithm for the steiner triple covering problem. Optimization Letters, 6:605–619, 04 2011.

[17] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiability testing.
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 26, 09 1999.

[18] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving local search. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. 1), AAAI ’94, page
337–343, USA, 1994. American Association for Artificial Intelligence.

[19] Bart Selman, Hector Levesque, and David Mitchell. A new method for solving hard satisfiability
problems. In Proceedings of the Tenth National Conference on Artificial Intelligence, AAAI’92,

page 440–446. AAAI Press, 1992.

[20] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. StarExec: A cross-community infrastructure
for logic solving. In International Joint Conference on Automated Reasoning, volume 8562, pages
367–373. Springer, 2014.

[21] John Thornton, Duc Nghia Pham, Stuart Bain, and Valnir Ferreira. Additive versus multiplicative
clause weighting for sat. In Proceedings of the 19th National Conference on Artifical Intelligence,
AAAI’04, page 191–196. AAAI Press, 2004.

[22] Dave A. D. Tompkins and Holger H. Hoos. UBCSAT: An implementation and experimentation
environment for SLS algorithms for SAT and MAX-SAT. In Holger Hoos and David Mitchell, editors,
Revised Selected Papers from the Seventh International Conference on Theory and Applications
of Satisfiability Testing (SAT 2004), volume 3542 of Lecture Notes in Computer Science, pages
306–320. Springer, 2005.

	Introduction
	Preliminaries
	Prior work in SLS
	A look at ProbSAT
	A look at algorithms similar to DDFW

	DDFW and its variants
	DDFW
	A variation of the variable selection probability distribution
	A variation of the weight transfer rule

	Experimental results
	Benchmark instances and UBCSAT baseline
	Variable selection probability distribution variation results
	Linear rule results
	Linear rule transfer method results

	Conclusions and future work

